python实现把其他sql server数据库的某些表的前一天数据定时存储到自己数据库同名的表中

python 复制代码
import schedule
import time
import pyodbc
import pandas as pd
from datetime import datetime, timedelta
from sqlalchemy import create_engine, text
import warnings
import logging

# 配置数据库连接
source_databases = [
    {
        'database_name': '',
        'server': '',
        'database': '',
        'username': '',
        'password': '',
        'branch_id': 0  # 分店ID
    },
]

# 目标数据库配置
target_database = {
    'database_name': '',
    'server': '',
    'database': '',
    'username': '',
    'password': ''
}

# 要处理的表及其唯一标识字段和日期字段
tables = {
    'cmis_patientinfo': {'unique_field': '唯一标识', 'date_field': '日期字段', 'fendian_field': '分店ID'},
    'cmis_yuyue': {'unique_field': '唯一标识', 'date_field': '日期字段', 'fendian_field': '分店ID'},
}


# 连接数据库
def connect_to_db(config):
    connection_string = f"DRIVER={{ODBC Driver 17 for SQL Server}};SERVER={config['server']};DATABASE={config['database']};UID={config['username']};PWD={config['password']}"
    return pyodbc.connect(connection_string)


# 处理数据
def process_data(df, branch_id, fendian_field):
    df[fendian_field] = branch_id  # 动态更新分店ID
    return df


# 获取前一天的数据
def get_yesterday_data(connection, table, date_field):
    # 获取昨天的日期和时间(0点)
    yesterday_start = datetime.now().replace(hour=0, minute=0, second=0, microsecond=0) - timedelta(days=1)
    # 获取昨天的日期和时间(23:59:59)
    yesterday_end = yesterday_start + timedelta(hours=23, minutes=59, seconds=59)

    # 查询前一天的数据以包含 upload 不为 5 或为 NULL 的条件
    query = f"SELECT * FROM {table} WHERE {date_field} BETWEEN ? AND ? AND (upload != 5 OR upload IS NULL)"

    # 忽略pandas发出的特定UserWarning
    warnings.filterwarnings('ignore', category=UserWarning,
                            message="pandas only supports SQLAlchemy connectable")

    return pd.read_sql(query, connection, params=[yesterday_start, yesterday_end])


# 获取目标表的列名
def get_target_columns(connection, table):
    cursor = connection.cursor()
    cursor.execute(f"SELECT COLUMN_NAME FROM INFORMATION_SCHEMA.COLUMNS WHERE TABLE_NAME = '{table}'")
    columns = [row.COLUMN_NAME for row in cursor.fetchall()]
    cursor.close()
    return columns


# 数据类型转换函数
def convert_data_types(row):
    new_row = []
    for value in row:
        if pd.isnull(value):
            new_row.append(None)
        elif isinstance(value, pd.Timestamp):
            new_row.append(value.to_pydatetime())
        else:
            new_row.append(value)
    return tuple(new_row)


# 插入数据到目标数据库并更新upload字段
def insert_data_to_target(source_connection, target_connection, table, unique_field, df, db_config):
    print(f"{time.ctime()} ------ {db_config['database_name']}:表-{table}: 数据插入中...")
    source_cursor = source_connection.cursor()
    target_cursor = target_connection.cursor()

    target_columns = get_target_columns(target_connection, table)
    df_columns = df.columns.tolist()

    # 过滤出目标表存在的列
    common_columns = [col for col in df_columns if col in target_columns]

    success_count = 0
    failure_count = 0
    error = ''

    for index, row in df.iterrows():
        columns = ', '.join(common_columns)
        placeholders = ', '.join(['?' for _ in common_columns])
        values = convert_data_types(row[common_columns])

        insert_query = f"INSERT INTO {table} ({columns}) VALUES ({placeholders})"

        try:
            target_cursor.execute(insert_query, values)
            target_connection.commit()

            unique_value = row[unique_field]
            # 更新源数据库中 upload 字段为 5
            update_source_query = f"UPDATE {table} SET upload = 5 WHERE {unique_field} = ?"
            source_cursor.execute(update_source_query, unique_value)
            source_connection.commit()
            # 更新目标数据库中 upload 字段为 5
            update_target_query = f"UPDATE {table} SET upload = 5 WHERE {unique_field} = ?"
            target_cursor.execute(update_target_query, unique_value)
            target_connection.commit()

            success_count += 1
        except Exception as e:
            failure_count += 1
            error = e
            target_connection.rollback()
            source_connection.rollback()

    source_cursor.close()
    target_cursor.close()

    message = f"{time.ctime()} ------ {db_config['database_name']}:表-{table}: 插入成功 {success_count} 条, 插入失败 {failure_count} 条"

    if failure_count > 0:
        message += f", 失败原因: {error}"

    print(message)
    # print(f"{time.ctime()} ------ {db_config['database_name']}:表-{table}: 插入成功 {success_count} 条, 插入失败 {failure_count} 条")


# 主任务
def main_task():
    source_conn = None
    target_conn = None
    for db_config in source_databases:
        try:
            # 连接数据库
            source_conn = connect_to_db(db_config)
            print(f"{time.ctime()} ------ {db_config['database_name']}-数据库连接成功!")
            target_conn = connect_to_db(target_database)
            print(f"{time.ctime()} ------ {target_database['database_name']}-数据库连接成功!")

            for table, fields in tables.items():
                unique_field = fields['unique_field']
                date_field = fields['date_field']
                fendian_field = fields['fendian_field']
                try:
                    df = get_yesterday_data(source_conn, table, date_field)
                    if not df.empty:
                        processed_df = process_data(df, db_config['branch_id'], fendian_field)
                        insert_data_to_target(source_conn, target_conn, table, unique_field, processed_df, db_config)
                        # print(f"{time.ctime()} ------ {db_config['database_name']}:表-{table}: 数据处理成功!")
                    else:
                        print(f"{time.ctime()} ------ {db_config['database_name']}:表-{table}: 暂无待处理的昨日数据!")
                except Exception as e:
                    print(f"{time.ctime()} ------ {db_config['database_name']}:表-{table}:处理数据失败!error: {e}")
        except Exception as e:
            # print(f"{time.ctime()} ------ {db_config['database_name']}-数据库连接失败! error: {e}")
            logging.error(f"{time.ctime()} ------ {db_config['database_name']}-数据库连接失败! error: {e}")
            continue
        finally:
            try:
                if source_conn is not None:
                    source_conn.close()
                    print(f"{time.ctime()} ------ 关闭数据库连接 {db_config['database_name']}")
            except Exception as e:
                logging.error(f"{time.ctime()} ------ 关闭 {db_config['database_name']}-数据库连接时出错: {e}")

            try:
                if target_conn is not None:
                    target_conn.close()
                    print(f"{time.ctime()} ------ 关闭数据库连接 {target_database['database_name']}")
            except Exception as e:
                logging.error(f"{time.ctime()} ------ 关闭 {target_database['database_name']}-数据库连接时出错: {e}")

# 定时任务
schedule.every().day.at("03:00").do(main_task)

while True:
    schedule.run_pending()
    time.sleep(40)
相关推荐
Elastic 中国社区官方博客3 分钟前
设计新的 Kibana 仪表板布局以支持可折叠部分等
大数据·数据库·elasticsearch·搜索引擎·信息可视化·全文检索·kibana
阿俊仔(摸鱼版)4 分钟前
Python 常用运维模块之Shutil 模块
linux·服务器·python·自动化·云服务器
MarsBighead6 分钟前
(二)PosrgreSQL: Python3 连接Pgvector出错排查
python·postgresql·向量数据库·pgvector
可涵不会debug10 分钟前
C语言文件操作:标准库与系统调用实践
linux·服务器·c语言·开发语言·c++
深蓝海拓26 分钟前
Pyside6(PyQT5)中的QTableView与QSqlQueryModel、QSqlTableModel的联合使用
数据库·python·qt·pyqt
无须logic ᭄34 分钟前
CrypTen项目实践
python·机器学习·密码学·同态加密
百流1 小时前
scala文件编译相关理解
开发语言·学习·scala
Channing Lewis1 小时前
flask常见问答题
后端·python·flask
Channing Lewis1 小时前
如何保护 Flask API 的安全性?
后端·python·flask