每日Attention学习10——Scale-Aware Modulation

模块出处

[ICCV 23] [link] [code] Scale-Aware Modulation Meet Transformer


模块名称

Scale-Aware Modulation (SAM)


模块作用

改进的自注意力


模块结构

模块代码
python3 复制代码
import torch
import torch.nn as nn
import torch.nn.functional as F

class SAM(nn.Module):
    def __init__(self, dim, ca_num_heads=4, sa_num_heads=8, qkv_bias=False, qk_scale=None,
                       attn_drop=0., proj_drop=0., expand_ratio=2):
        super().__init__()
        self.ca_attention = 1
        self.dim = dim
        self.ca_num_heads = ca_num_heads
        self.sa_num_heads = sa_num_heads
        assert dim % ca_num_heads == 0, f"dim {dim} should be divided by num_heads {ca_num_heads}."
        assert dim % sa_num_heads == 0, f"dim {dim} should be divided by num_heads {sa_num_heads}."
        self.act = nn.GELU()
        self.proj = nn.Linear(dim, dim)
        self.proj_drop = nn.Dropout(proj_drop)
        self.split_groups=self.dim//ca_num_heads
        self.v = nn.Linear(dim, dim, bias=qkv_bias)
        self.s = nn.Linear(dim, dim, bias=qkv_bias)
        for i in range(self.ca_num_heads):
            local_conv = nn.Conv2d(dim//self.ca_num_heads, dim//self.ca_num_heads, kernel_size=(3+i*2), padding=(1+i), stride=1, groups=dim//self.ca_num_heads)
            setattr(self, f"local_conv_{i + 1}", local_conv)
        self.proj0 = nn.Conv2d(dim, dim*expand_ratio, kernel_size=1, padding=0, stride=1, groups=self.split_groups)
        self.bn = nn.BatchNorm2d(dim*expand_ratio)
        self.proj1 = nn.Conv2d(dim*expand_ratio, dim, kernel_size=1, padding=0, stride=1)

    def forward(self, x, H, W):
        # In
        B, N, C = x.shape
        v = self.v(x)
        s = self.s(x).reshape(B, H, W, self.ca_num_heads, C//self.ca_num_heads).permute(3, 0, 4, 1, 2)

        # Multi-Head Mixed Convolution
        for i in range(self.ca_num_heads):
            local_conv = getattr(self, f"local_conv_{i + 1}")
            s_i= s[i]
            s_i = local_conv(s_i).reshape(B, self.split_groups, -1, H, W)
            if i == 0:
                s_out = s_i
            else:
                s_out = torch.cat([s_out,s_i],2)
        s_out = s_out.reshape(B, C, H, W)

        # Scale-Aware Aggregation (SAA)
        s_out = self.proj1(self.act(self.bn(self.proj0(s_out))))
        self.modulator = s_out
        s_out = s_out.reshape(B, C, N).permute(0, 2, 1)
        x = s_out * v

        # Out
        x = self.proj(x)
        x = self.proj_drop(x)
        return x

if __name__ == '__main__':
    x = torch.randn([3, 1024, 256])  # B, N, C
    sam = SAM(dim=256)
    out = sam(x, H=32, W=32)  # H=N*W
    print(out.shape)  # 3, 1024, 256

原文表述

我们提出了一种新颖的卷积调制,称为尺度感知调制 (SAM),它包含两个新模块:多头混合卷积 (MHMC) 和尺度感知聚合 (SAA)。MHMC 模块旨在增强感受野并同时捕获多尺度特征。SAA 模块旨在有效地聚合不同头部之间的特征,同时保持轻量级架构。

相关推荐
m0_743106465 小时前
【论文笔记】MV-DUSt3R+:两秒重建一个3D场景
论文阅读·深度学习·计算机视觉·3d·几何学
m0_743106465 小时前
【论文笔记】TranSplat:深度refine的camera-required可泛化稀疏方法
论文阅读·深度学习·计算机视觉·3d·几何学
zenpluck17 小时前
GS-SLAM论文阅读--SplatMAP
论文阅读
zenpluck17 小时前
GS论文阅读--Hard Gaussian Splatting
论文阅读
好评笔记20 小时前
AIGC视频扩散模型新星:Video 版本的SD模型
论文阅读·深度学习·机器学习·计算机视觉·面试·aigc·transformer
XLYcmy1 天前
三篇物联网漏洞挖掘综述
论文阅读·物联网·网络安全·静态分析·漏洞挖掘·动态分析·固件
__如果1 天前
论文阅读--Qwen2&2.5技术报告
论文阅读·qwen
好评笔记1 天前
AIGC视频生成模型:Stability AI的SVD(Stable Video Diffusion)模型
论文阅读·人工智能·深度学习·机器学习·计算机视觉·面试·aigc
zenpluck1 天前
GS论文阅读--GeoTexDensifier
论文阅读
feifeikon2 天前
大模型GUI系列论文阅读 DAY2续2:《使用指令微调基础模型的多模态网页导航》
论文阅读