NLP篇8 自然语言处理 使用注意力模型

在自然语言处理中,注意力模型(Attention Model)被广泛应用以聚焦于输入序列的不同部分。

以基于 Transformer 的自然语言处理模型为例,注意力机制允许模型在处理每个位置时动态地为输入序列的不同位置分配权重,从而捕捉长距离的依赖关系和重要信息。

以下是一个简单的示例,展示如何在 Python 中使用 torch 库实现一个简单的注意力机制:

复制代码
import torch

def scaled_dot_product_attention(q, k, v, d_k):
    # 计算得分
    scores = torch.bmm(q, k.transpose(1, 2)) / torch.sqrt(d_k)
    # 应用 Softmax 进行归一化
    attn_weights = torch.nn.Softmax(dim=-1)(scores)
    # 计算注意力输出
    attn_output = torch.bmm(attn_weights, v)
    return attn_output

# 示例输入
q = torch.randn(1, 5, 16)  # 查询向量
k = torch.randn(5, 5, 16)  # 键向量
v = torch.randn(5, 16, 32)  # 值向量
d_k = 16  # 键的维度

attn_output = scaled_dot_product_attention(q, k, v, d_k)
print(attn_output.shape) 
相关推荐
犀思云几秒前
企业端到端NaaS连接的优势与应用
网络·人工智能·机器人·智能仓储·专线
Keep_Trying_Go9 分钟前
基于GAN的文生图算法详解ControlGAN(Controllable Text-to-Image Generation)
人工智能·python·深度学习·神经网络·机器学习·生成对抗网络·文生图
Spey_Events12 分钟前
星箭聚力启盛会,2026第二届商业航天产业发展大会暨商业航天展即将开幕!
大数据·人工智能
JoySSLLian16 分钟前
IP SSL证书:一键解锁IP通信安全,高效抵御网络威胁!
网络·人工智能·网络协议·tcp/ip·ssl
AC赳赳老秦27 分钟前
专利附图说明:DeepSeek生成的专业技术描述与权利要求书细化
大数据·人工智能·kafka·区块链·数据库开发·数据库架构·deepseek
小雨青年38 分钟前
鸿蒙 HarmonyOS 6 | AI Kit 集成 Core Speech Kit 语音服务
人工智能·华为·harmonyos
懒羊羊吃辣条39 分钟前
电力负荷预测怎么做才不翻车
人工智能·深度学习·机器学习·时间序列
前进的程序员1 小时前
2026年IT行业技术发展前瞻性见解
人工智能
汽车仪器仪表相关领域1 小时前
MTX-A 模拟废气温度(EGT)计 核心特性与车载实操指南
网络·人工智能·功能测试·单元测试·汽车·可用性测试
GeeLark1 小时前
#请输入你的标签内容
大数据·人工智能·自动化