NLP篇8 自然语言处理 使用注意力模型

在自然语言处理中,注意力模型(Attention Model)被广泛应用以聚焦于输入序列的不同部分。

以基于 Transformer 的自然语言处理模型为例,注意力机制允许模型在处理每个位置时动态地为输入序列的不同位置分配权重,从而捕捉长距离的依赖关系和重要信息。

以下是一个简单的示例,展示如何在 Python 中使用 torch 库实现一个简单的注意力机制:

复制代码
import torch

def scaled_dot_product_attention(q, k, v, d_k):
    # 计算得分
    scores = torch.bmm(q, k.transpose(1, 2)) / torch.sqrt(d_k)
    # 应用 Softmax 进行归一化
    attn_weights = torch.nn.Softmax(dim=-1)(scores)
    # 计算注意力输出
    attn_output = torch.bmm(attn_weights, v)
    return attn_output

# 示例输入
q = torch.randn(1, 5, 16)  # 查询向量
k = torch.randn(5, 5, 16)  # 键向量
v = torch.randn(5, 16, 32)  # 值向量
d_k = 16  # 键的维度

attn_output = scaled_dot_product_attention(q, k, v, d_k)
print(attn_output.shape) 
相关推荐
SEO_juper5 分钟前
生成式引擎优化(GEO)终极指南:优化品牌在对话式AI中的呈现与推荐
人工智能·chatgpt·seo·geo·数字营销
小程故事多_8020 分钟前
AI Agent进阶架构:用渐进式披露驯服复杂性
人工智能·架构
人工智能AI技术1 小时前
【Agent从入门到实践】10 决策模块:Agent如何“思考问题”
人工智能
qq_527887871 小时前
联邦经典算法Fedavg实现
人工智能·深度学习
天天讯通2 小时前
数据公司与AI五大主流合作模式
人工智能
Clarence Liu2 小时前
AI Agent开发(2) - 深入解析 A2A 协议与 Go 实战指南
开发语言·人工智能·golang
综合热讯2 小时前
AUS GLOBAL 荣耀赞助 2026 LIL TOUR 高尔夫嘉年华
人工智能
小饼干超人2 小时前
详解向量数据库中的PQ算法(Product Quantization)
人工智能·算法·机器学习
砚边数影3 小时前
AI数学基础(一):线性代数核心,向量/矩阵运算的Java实现
java·数据库·人工智能·线性代数·矩阵·ai编程·金仓数据库
互联网科技看点3 小时前
诸葛io获认可:金融分析智能体赛道领航者
大数据·人工智能·金融