NLP篇8 自然语言处理 使用注意力模型

在自然语言处理中,注意力模型(Attention Model)被广泛应用以聚焦于输入序列的不同部分。

以基于 Transformer 的自然语言处理模型为例,注意力机制允许模型在处理每个位置时动态地为输入序列的不同位置分配权重,从而捕捉长距离的依赖关系和重要信息。

以下是一个简单的示例,展示如何在 Python 中使用 torch 库实现一个简单的注意力机制:

复制代码
import torch

def scaled_dot_product_attention(q, k, v, d_k):
    # 计算得分
    scores = torch.bmm(q, k.transpose(1, 2)) / torch.sqrt(d_k)
    # 应用 Softmax 进行归一化
    attn_weights = torch.nn.Softmax(dim=-1)(scores)
    # 计算注意力输出
    attn_output = torch.bmm(attn_weights, v)
    return attn_output

# 示例输入
q = torch.randn(1, 5, 16)  # 查询向量
k = torch.randn(5, 5, 16)  # 键向量
v = torch.randn(5, 16, 32)  # 值向量
d_k = 16  # 键的维度

attn_output = scaled_dot_product_attention(q, k, v, d_k)
print(attn_output.shape) 
相关推荐
andyguo1 分钟前
ChatGPT Atlas vs Chrome:AI 浏览器的新纪元
人工智能·chrome·chatgpt
北京迅为27 分钟前
【北京迅为】iTOP-4412精英版使用手册-第六十七章 USB鼠标驱动详解
linux·人工智能·嵌入式·4412
余俊晖1 小时前
RLVR训练多模态文档解析模型-olmOCR 2技术方案(模型、数据和代码均开源)
人工智能·算法·ocr·grpo
这张生成的图像能检测吗1 小时前
(论文速读)开放词汇3D场景理解的掩蔽点-实体对比
人工智能·计算机视觉·图像生成·1024程序员节·开放词汇·3d重建
大象耶2 小时前
计算机视觉六大前沿创新方向
论文阅读·人工智能·深度学习·计算机网络·机器学习
TMT星球3 小时前
加速进化发布Booster K1,打造AI时代的苹果公司
人工智能
tangchen。3 小时前
YOLOv4 :兼顾速度与精度!
人工智能·计算机视觉·目标跟踪
郑清4 小时前
Spring AI Alibaba 10分钟快速入门
java·人工智能·后端·ai·1024程序员节·springaialibaba
学术头条4 小时前
用视觉压缩文本!清华、智谱推出Glyph框架:通过视觉-文本压缩扩展上下文窗口
人工智能·深度学习·计算机视觉
Mrliu__4 小时前
Opencv(一): 用Opencv了解图像
人工智能·opencv·计算机视觉