NLP篇8 自然语言处理 使用注意力模型

在自然语言处理中,注意力模型(Attention Model)被广泛应用以聚焦于输入序列的不同部分。

以基于 Transformer 的自然语言处理模型为例,注意力机制允许模型在处理每个位置时动态地为输入序列的不同位置分配权重,从而捕捉长距离的依赖关系和重要信息。

以下是一个简单的示例,展示如何在 Python 中使用 torch 库实现一个简单的注意力机制:

复制代码
import torch

def scaled_dot_product_attention(q, k, v, d_k):
    # 计算得分
    scores = torch.bmm(q, k.transpose(1, 2)) / torch.sqrt(d_k)
    # 应用 Softmax 进行归一化
    attn_weights = torch.nn.Softmax(dim=-1)(scores)
    # 计算注意力输出
    attn_output = torch.bmm(attn_weights, v)
    return attn_output

# 示例输入
q = torch.randn(1, 5, 16)  # 查询向量
k = torch.randn(5, 5, 16)  # 键向量
v = torch.randn(5, 16, 32)  # 值向量
d_k = 16  # 键的维度

attn_output = scaled_dot_product_attention(q, k, v, d_k)
print(attn_output.shape) 
相关推荐
love530love2 分钟前
【探讨】“父级/基环境损坏,子环境全部失效”,如何避免 .venv 受父级 Python 损坏影响?
java·开发语言·人工智能·windows·python·编程·ai编程
高洁012 分钟前
深度学习—卷积神经网络(3)
人工智能·深度学习·机器学习·transformer·知识图谱
Wang15303 分钟前
AI对IT从业者的影响:替代还是协作?
人工智能
mit6.82416 分钟前
[AI OS] 重新定义人机交互未来
人工智能·人机交互
初学大模型27 分钟前
机器人原生感知系统设计
人工智能·机器人
人工智能培训28 分钟前
深度学习—卷积神经网络(3)
人工智能·深度学习·神经网络·机器学习·cnn·智能体
weixin_4787963432 分钟前
kinghelm品牌的产品
人工智能·硬件工程·射频工程
wxl78122734 分钟前
Cognee API 完整使用文档(含分类、调用顺序、curl 示例、文件样本、一键脚本及异常码)
人工智能·congee0.5.1
小CC吃豆子44 分钟前
Adobe Premiere Pro 2024 (pr) 剪辑软件剪辑 + 调色 + 导出全攻略下载安装教程
人工智能·语音识别
刘立军1 小时前
本地大模型编程实战(39)MCP实战演练
人工智能·后端·mcp