NLP篇8 自然语言处理 使用注意力模型

在自然语言处理中,注意力模型(Attention Model)被广泛应用以聚焦于输入序列的不同部分。

以基于 Transformer 的自然语言处理模型为例,注意力机制允许模型在处理每个位置时动态地为输入序列的不同位置分配权重,从而捕捉长距离的依赖关系和重要信息。

以下是一个简单的示例,展示如何在 Python 中使用 torch 库实现一个简单的注意力机制:

复制代码
import torch

def scaled_dot_product_attention(q, k, v, d_k):
    # 计算得分
    scores = torch.bmm(q, k.transpose(1, 2)) / torch.sqrt(d_k)
    # 应用 Softmax 进行归一化
    attn_weights = torch.nn.Softmax(dim=-1)(scores)
    # 计算注意力输出
    attn_output = torch.bmm(attn_weights, v)
    return attn_output

# 示例输入
q = torch.randn(1, 5, 16)  # 查询向量
k = torch.randn(5, 5, 16)  # 键向量
v = torch.randn(5, 16, 32)  # 值向量
d_k = 16  # 键的维度

attn_output = scaled_dot_product_attention(q, k, v, d_k)
print(attn_output.shape) 
相关推荐
上进小菜猪4 小时前
基于 YOLOv8 的智能车牌定位检测系统设计与实现—从模型训练到 PyQt 可视化落地的完整实战方案
人工智能
AI浩4 小时前
UNIV:红外与可见光模态的统一基础模型
人工智能·深度学习
GitCode官方4 小时前
SGLang AI 金融 π 对(杭州站)回顾:大模型推理的工程实践全景
人工智能·金融·sglang
木头左4 小时前
LSTM模型入参有效性验证基于量化交易策略回测的方法学实践
人工智能·rnn·lstm
找方案5 小时前
我的 all-in-rag 学习笔记:文本分块 ——RAG 系统的 “信息切菜术“
人工智能·笔记·all-in-rag
亚马逊云开发者5 小时前
让 AI 工作空间更智能:Amazon Quick Suite 集成博查搜索实践
人工智能
腾讯WeTest5 小时前
「低成本、高质高效」WeTest AI翻译限时免费
人工智能
Lucas555555555 小时前
现代C++四十不惑:AI时代系统软件的基石与新征程
开发语言·c++·人工智能
言之。5 小时前
Claude Code 专业教学文档
人工智能
Fuly10245 小时前
大模型架构理解与学习
人工智能·语言模型