NLP篇8 自然语言处理 使用注意力模型

在自然语言处理中,注意力模型(Attention Model)被广泛应用以聚焦于输入序列的不同部分。

以基于 Transformer 的自然语言处理模型为例,注意力机制允许模型在处理每个位置时动态地为输入序列的不同位置分配权重,从而捕捉长距离的依赖关系和重要信息。

以下是一个简单的示例,展示如何在 Python 中使用 torch 库实现一个简单的注意力机制:

复制代码
import torch

def scaled_dot_product_attention(q, k, v, d_k):
    # 计算得分
    scores = torch.bmm(q, k.transpose(1, 2)) / torch.sqrt(d_k)
    # 应用 Softmax 进行归一化
    attn_weights = torch.nn.Softmax(dim=-1)(scores)
    # 计算注意力输出
    attn_output = torch.bmm(attn_weights, v)
    return attn_output

# 示例输入
q = torch.randn(1, 5, 16)  # 查询向量
k = torch.randn(5, 5, 16)  # 键向量
v = torch.randn(5, 16, 32)  # 值向量
d_k = 16  # 键的维度

attn_output = scaled_dot_product_attention(q, k, v, d_k)
print(attn_output.shape) 
相关推荐
子燕若水1 小时前
Unreal Engine 5中的AI知识
人工智能
极限实验室2 小时前
Coco AI 实战(一):Coco Server Linux 平台部署
人工智能
杨过过儿2 小时前
【学习笔记】4.1 什么是 LLM
人工智能
巴伦是只猫2 小时前
【机器学习笔记Ⅰ】13 正则化代价函数
人工智能·笔记·机器学习
大千AI助手2 小时前
DTW模版匹配:弹性对齐的时间序列相似度度量算法
人工智能·算法·机器学习·数据挖掘·模版匹配·dtw模版匹配
AI生存日记3 小时前
百度文心大模型 4.5 系列全面开源 英特尔同步支持端侧部署
人工智能·百度·开源·open ai大模型
LCG元3 小时前
自动驾驶感知模块的多模态数据融合:时序同步与空间对齐的框架解析
人工智能·机器学习·自动驾驶
why技术3 小时前
Stack Overflow,轰然倒下!
前端·人工智能·后端
超龄超能程序猿4 小时前
(三)PS识别:基于噪声分析PS识别的技术实现
图像处理·人工智能·计算机视觉