昇思22天

CycleGAN图像风格迁移互换

CycleGAN(循环生成对抗网络)是一种用于在没有成对训练数据的情况下学习将图像从源域 X 转换到目标域 Y 的方法。该技术的一个重要应用是域迁移,即图像风格迁移。

模型介绍

模型简介: CycleGAN 来自于论文 Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks。该模型允许在没有配对示例的情况下将图像从一个域转换到另一个域,与 Pix2Pix 不同,Pix2Pix 需要成对的训练数据。

模型结构: CycleGAN 由两个对称的 GAN 网络组成,通过生成器和判别器的相互作用实现图像风格的转换。生成器将苹果图像转换为橘子图像,而判别器判断图像的真实性。模型的关键部分是循环一致损失(Cycle Consistency Loss),确保生成的图像能与输入图像保持一致。

模型结构细节

生成器: 使用 9 个残差块组成。生成器的目的是将输入图像转换为目标风格的图像。

判别器: 使用 PatchGAN 模型,输出判定图像为真实图的概率。

损失函数和优化器

损失函数: 对抗损失(GAN Loss)和循环一致损失(Cycle Consistency Loss)是关键。对抗损失使生成的图像更逼真,而循环一致损失确保图像能转换回原始图像。

优化器: 不同模型需要单独设置优化器,生成器和判别器有不同的优化目标。

模型训练

训练过程: 分为训练判别器和训练生成器。判别器的目标是最大化判别图像真伪的概率,生成器则试图最小化生成图像与真实图像的差异。

前向计算和反向传播: 前向计算包括损失计算,反向传播用于更新模型权重。

相关推荐
tap.AI几秒前
RAG系列(四)高级 RAG 架构与复杂推理
人工智能·架构
mmq在路上1 分钟前
Fast-livo2 gazebo仿真实践记录
人工智能·slam·xtdrone
在等星星呐4 分钟前
人工智能从0基础到精通
前端·人工智能·python
A林玖5 分钟前
【 深度学习 】生成对抗网络 GAN
人工智能·深度学习
智驱力人工智能9 分钟前
仓库园区无人机烟雾识别:构建立体化、智能化的早期火灾预警体系 无人机烟雾检测 无人机动态烟雾分析AI系统 无人机辅助火灾救援系统
人工智能·opencv·算法·目标检测·架构·无人机·边缘计算
未来之窗软件服务10 分钟前
幽冥大陆(六十) SmolVLM 本地部署 轻量 AI 方案—东方仙盟筑基期
人工智能·本地部署·轻量模型·东方仙盟·东方仙盟自动化
今天也要学习吖12 分钟前
【开源客服系统推荐】AI-CS:一个开源的智能客服系统
人工智能·开源·客服系统·ai大模型·ai客服·开源客服系统
Christo315 分钟前
2022-《Deep Clustering: A Comprehensive Survey》
人工智能·算法·机器学习·数据挖掘
jqpwxt17 分钟前
启点创新智慧景区服务平台,智慧景区数字驾驶舱建设
大数据·人工智能
weisian15119 分钟前
入门篇--人工智能发展史-2-什么是深度学习,深度学习的前世今生?
人工智能·深度学习