基于点云的铁路场景分类:1,接触线的提取

(1)点云分为地面点和非地面点;

(2)在非地面点中使用PCA提取线性特征点;

值得注意的是,非地面点中的线性有很多,不仅有接触线,而且包含回流线、承载电缆。而且也不总是平行于地面的线。因此,需要通过筛选进行选择,这个时候就有两种思路分别是

1)选择接触线的特征,一次性从整体的线状点云中提取得到接触线。

2)发挥主观能动性,先剔除断的,然后是矮的。慢慢的把接触线分割出来。

使用了角度阈值剔除了倾斜的线段。观察场景,然后按照距离聚类分出最多的三个类别。

接触线和称重电缆是平行的,因此通过坐标x y的平均值来判别,后续通过z值判别接触线。

只适合于简单的铁路场景。复杂的还是第一个提取思路,或者先通过铁轨路基进行提取线也是可行的路子。但是我是先提的线,然后通过贯通性分析再去提取铁轨路基。

相关推荐
中达瑞和-高光谱·多光谱7 小时前
多光谱图像颜色特征用于茶叶分类的研究进展
人工智能·分类·数据挖掘
cx330上的猫1 天前
价值1w的数据分析课知识点汇总-excel使用(第一篇)
数据挖掘·数据分析·excel
Hs_QY_FX1 天前
Python 分类模型评估:从理论到实战(以信用卡欺诈检测为例)
人工智能·python·机器学习·数据挖掘·多分类评估
成为深度学习高手1 天前
DGCN+informer分类预测模型
人工智能·分类·数据挖掘
max5006001 天前
多GPU数据并行训练中GPU利用率不均衡问题深度分析与解决方案
人工智能·机器学习·分类·数据挖掘
F_D_Z2 天前
探索性数据分析|概念辨析
数据挖掘·数据分析
搞科研的小刘选手2 天前
2025计算机视觉和影像计算国际学术会议(CVIC 2025)
人工智能·机器学习·计算机视觉·数据挖掘·数字孪生·影像计算·电磁与光学成像
一只专注做软件的湖南人2 天前
亚马逊 SP-API 深度开发:关键字搜索接口的购物意图挖掘与合规竞品分析
大数据·数据挖掘·api
Blossom.1182 天前
把AI“浓缩”到1KB:超紧凑型决策树在MCU上的极限优化实战
人工智能·python·单片机·深度学习·决策树·机器学习·数据挖掘
蒋星熠2 天前
基于深度学习的卫星图像分类(Kaggle比赛实战)
人工智能·python·深度学习·机器学习·分类·数据挖掘