基于点云的铁路场景分类:1,接触线的提取

(1)点云分为地面点和非地面点;

(2)在非地面点中使用PCA提取线性特征点;

值得注意的是,非地面点中的线性有很多,不仅有接触线,而且包含回流线、承载电缆。而且也不总是平行于地面的线。因此,需要通过筛选进行选择,这个时候就有两种思路分别是

1)选择接触线的特征,一次性从整体的线状点云中提取得到接触线。

2)发挥主观能动性,先剔除断的,然后是矮的。慢慢的把接触线分割出来。

使用了角度阈值剔除了倾斜的线段。观察场景,然后按照距离聚类分出最多的三个类别。

接触线和称重电缆是平行的,因此通过坐标x y的平均值来判别,后续通过z值判别接触线。

只适合于简单的铁路场景。复杂的还是第一个提取思路,或者先通过铁轨路基进行提取线也是可行的路子。但是我是先提的线,然后通过贯通性分析再去提取铁轨路基。

相关推荐
geneculture8 小时前
融合全部讨论精华的融智学认知与实践总览图:掌握在复杂世界中锚定自我、有效行动、并参与塑造近未来的元能力
大数据·人工智能·数据挖掘·信息科学·融智学的重要应用·信智序位·全球软件定位系统
智算菩萨10 小时前
深度学习在教育数据挖掘(EDM)中的方法体系:从任务建模到算法范式的理论梳理与总结
深度学习·算法·数据挖掘
自然语1 天前
数字生已经进化到一个分水岭面临选择?先实现“动态识别“还是先实现“特征信息归纳分类“,文中给出以给出答案,大家选哪个方向?
人工智能·分类·数据挖掘
RickyWasYoung1 天前
【聚类算法】高维数据的聚类
算法·数据挖掘·聚类
我是哈哈hh2 天前
【Python数据分析】Numpy总结
开发语言·python·数据挖掘·数据分析·numpy·python数据分析
小飞象—木兮2 天前
【产品运营必备】数据分析实战宝典:从入门到精通,驱动业务增长(附相关材料下载)
大数据·数据挖掘·数据分析·产品运营
kong79069282 天前
大数据的特征和数据分析
大数据·数据挖掘·数据分析
weixin_457760002 天前
EIOU (Efficient IoU): 高效边界框回归损失的解析
人工智能·数据挖掘·回归
sensen_kiss2 天前
INT303 Big Data Analysis 大数据分析 Pt.10 分析模型和混合模型
大数据·学习·机器学习·数据挖掘·数据分析
njsgcs2 天前
pyautocad 基于线段包围盒聚类
python·数据挖掘·聚类