数据预处理

一般例如json数据可以用Pandas进行数据处理
with open('xxx.json','r', encoding = 'utf-8') as filename

python 复制代码
import json
import pandas as pd
# 读取JSON文件, utf-8保留中文
with open('json/prompt.json', 'r', encoding='utf-8') as file:
    data = json.load(file)
# 存储提取的内容
extracted_data = []

# 遍历
for item in data:
	if item['kwargs'] != "{}":  # 或者 if 'kwargs' in item:
		kwargs_dict = item
		extracted_data.append(kwargs_dict)

# 写入新的JSON文件,可以同时写多个,ensure_ascii false保留中文,index 缩进4格
with open('new1.json','w',encoding = 'utf-8') as newfile1, with open ('new2.json','w',encoding = 'utf-8') as newfile2:
	json.dump(extracted_data, newfile1, ensure_ascii = False, index = 4)

# df格式
df = pd.DataFrame(data)
# csv保存
# 如果需要保存为CSV文件
df.to_csv('output.csv', index=False, encoding='utf-8') # 此处index是索引,,不包含索引
		

Pandas DataFrame 提供了丰富的数据处理和查看方法。以下是一些常见的方法和示例代码:

查看数据

  1. 查看前几行数据

    python 复制代码
    df.head()

    查看前5行数据。

  2. 查看后几行数据

    python 复制代码
    df.tail()

    查看后5行数据。

  3. 查看数据的基本信息

    python 复制代码
    df.info()

    显示数据类型、非空值计数等信息。

  4. 查看描述性统计信息

    python 复制代码
    df.describe()

    显示数据的统计信息,如平均值、标准差等。

处理缺失值

  1. 查找缺失值

    python 复制代码
    df.isnull().sum()

    查看每列缺失值的数量。

  2. 删除包含缺失值的行

    python 复制代码
    df.dropna()

    删除包含任何缺失值的行。

  3. 填充缺失值

    python 复制代码
    df.fillna(value)

    用指定值填充缺失值。例如,用0填充:

    python 复制代码
    df.fillna(0)

数据选择与过滤

  1. 选择列

    python 复制代码
    df['column_name']

    选择单列数据。

    python 复制代码
    df[['column1', 'column2']]

    选择多列数据。

  2. 选择行

    使用行索引选择行:

    python 复制代码
    df.loc[0]

    使用条件过滤行:

    python 复制代码
    df[df['column_name'] > value]

数据操作

  1. 添加新列

    python 复制代码
    df['new_column'] = df['column1'] + df['column2']
  2. 删除列

    python 复制代码
    df.drop(columns=['column_name'])
  3. 重命名列

    python 复制代码
    df.rename(columns={'old_name': 'new_name'}, inplace=True)
  4. 数据排序

    python 复制代码
    df.sort_values(by='column_name', ascending=False)

数据合并

  1. 按列合并

    python 复制代码
    df1.merge(df2, on='common_column')
  2. 按行合并

    python 复制代码
    pd.concat([df1, df2])
相关推荐
Hello.Reader15 小时前
PyFlink 向量化 UDF(Vectorized UDF)Arrow 批传输原理、pandas 标量/聚合函数、配置与内存陷阱、五种写法一网打尽
python·flink·pandas
Hello.Reader20 小时前
PyFlink Table API Data Types DataType 是什么、UDF 类型声明怎么写、Python / Pandas 类型映射一文搞懂
python·php·pandas
Hello.Reader21 小时前
PyFlink Table API 用户自定义函数(UDF)通用 UDF vs Pandas UDF、打包部署、open 预加载资源、读取作业参数、单元测试
log4j·pandas
海棠AI实验室1 天前
第十六章:小项目 2 CSV → 清洗 → 统计 → 图表 → 报告输出
pandas
逻极2 天前
数据分析项目:Pandas + SQLAlchemy,从数据库到DataFrame的丝滑实战
python·mysql·数据分析·pandas·sqlalchemy
海棠AI实验室2 天前
第十七章 调试与排错:读懂 Traceback 的方法论
python·pandas·调试
kong79069282 天前
Pandas简介
信息可视化·数据分析·pandas
爱喝可乐的老王2 天前
数据分析实践--数据解析购房关键
信息可视化·数据分析·pandas·matplotlib
叫我:松哥2 天前
基于 Flask 的音乐推荐与可视化分析系统,包含用户、创作者、管理员三种角色,集成 ECharts 进行数据可视化,采用混合推荐算法
开发语言·python·信息可视化·flask·echarts·pandas·推荐算法
龙腾AI白云2 天前
10分钟了解向量数据库(3)
pandas·scipy