Accelerated PyTorch training on Mac

本文翻译整理自:Accelerated PyTorch training on Mac
https://developer.apple.com/metal/pytorch/


文章目录


Metal 加速

PyTorch使用新的 Metal Performance Shaders(MPS)后端进行GPU训练加速。

这个MPS后端扩展了PyTorch框架,提供了在Mac上设置和运行操作的脚本和功能。

MPS框架使用针对每个Metal GPU系列的独特特性进行微调的内核来优化计算性能。

新的mps设备将机器学习计算图和原语映射到MPS Graph框架和MPS提供的调优内核上。


要求

  • 配备Apple芯片或AMD GPU的Mac电脑
  • macOS 12.3或更高版本
  • Python 3.7或更高版本
  • Xcode命令行工具:xcode-select --install

开始

您可以使用Anaconda或pip。请注意,带有Apple芯片的Mac和带有Intel x86的Mac之间的环境设置会有所不同。

使用安装页面上的PyTorch安装选择器为MPS设备加速选择预览(夜间)。MPS后端支持是PyTorch 1.12官方版本的一部分。PyTorch的预览(夜间)版本将在您的设备上提供最新的mps支持。


1.Set up


Anaconda

Apple silicon

shell 复制代码
curl -O https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-arm64.sh
sh Miniconda3-latest-MacOSX-arm64.sh

x86

shell 复制代码
curl -O https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh
sh Miniconda3-latest-MacOSX-x86_64.sh

pip

您可以使用macOS附带的预装pip3。或者,您可以从Python网站或Homebrew包管理器安装它。


2.安装


Anaconda
shell 复制代码
conda install pytorch torchvision torchaudio -c pytorch-nightly

pip
shell 复制代码
pip3 install --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/cpu

从源代码构建

构建支持MPS的PyTorch需要Xcode13.3.1或更高版本,您可以在Mac App Store上下载最新的公开Xcode版本或在Mac App Store上下载最新的beta版本或在Apple Developer网站上下载最新的beta版本。
USE_MPS环境变量控制构建PyTorch并包含MPS支持。

要构建PyTorch,请按照PyTorch网站上提供的说明进行操作。


3.验证

您可以使用简单的Python脚本验证mps支持:

python 复制代码
import torch
if torch.backends.mps.is_available():
    mps_device = torch.device("mps")
    x = torch.ones(1, device=mps_device)
    print (x)
else:
    print ("MPS device not found.")

输出应显示:

shell 复制代码
tensor([1.], device='mps:0')

反馈意见

MPS后端处于测试阶段,我们正在积极解决问题并修复错误。要报告问题,请使用标签为"模块:MP"的GitHub问题跟踪器


资源

PyTorch安装页面
PyTorch留档在MPS后端
添加一个新的PyTorch操作到MPS后端
PyTorch性能分析使用MPS分析器

相关推荐
qyresearch_21 小时前
大语言模型训推一体机:AI算力革命的“新引擎”,2031年市场规模突破123亿的黄金赛道
人工智能·语言模型·自然语言处理
计算机小手1 天前
使用 llama.cpp 在本地高效运行大语言模型,支持 Docker 一键启动,兼容CPU与GPU
人工智能·经验分享·docker·语言模型·开源软件
短视频矩阵源码定制1 天前
矩阵系统哪个好?2025年全方位选型指南与品牌深度解析
java·人工智能·矩阵·架构·aigc
java1234_小锋1 天前
[免费]基于Python的Flask酒店客房管理系统【论文+源码+SQL脚本】
开发语言·人工智能·python·flask·酒店客房
hakuii1 天前
SVD分解后的各个矩阵的深层理解
人工智能·机器学习·矩阵
冷冷的菜哥1 天前
21款m1 max升级到macOS 14——Sonoma
macos·苹果·sonoma·macos系统升级
laocaibulao1 天前
mac电脑composer命令如何指定PHP版本
macos·php·composer
00后程序员张1 天前
iOS 上架费用全解析 开发者账号、App 审核、工具使用与开心上架(Appuploader)免 Mac 成本优化指南
android·macos·ios·小程序·uni-app·cocoa·iphone
这张生成的图像能检测吗1 天前
(论文速读)基于图像堆栈的低频超宽带SAR叶簇隐蔽目标变化检测
图像处理·人工智能·深度学习·机器学习·信号处理·雷达·变化检测
leijiwen1 天前
城市本地生活实体零售可信数据空间 RWA 平台方案
人工智能·生活·零售