Accelerated PyTorch training on Mac

本文翻译整理自:Accelerated PyTorch training on Mac
https://developer.apple.com/metal/pytorch/


文章目录


Metal 加速

PyTorch使用新的 Metal Performance Shaders(MPS)后端进行GPU训练加速。

这个MPS后端扩展了PyTorch框架,提供了在Mac上设置和运行操作的脚本和功能。

MPS框架使用针对每个Metal GPU系列的独特特性进行微调的内核来优化计算性能。

新的mps设备将机器学习计算图和原语映射到MPS Graph框架和MPS提供的调优内核上。


要求

  • 配备Apple芯片或AMD GPU的Mac电脑
  • macOS 12.3或更高版本
  • Python 3.7或更高版本
  • Xcode命令行工具:xcode-select --install

开始

您可以使用Anaconda或pip。请注意,带有Apple芯片的Mac和带有Intel x86的Mac之间的环境设置会有所不同。

使用安装页面上的PyTorch安装选择器为MPS设备加速选择预览(夜间)。MPS后端支持是PyTorch 1.12官方版本的一部分。PyTorch的预览(夜间)版本将在您的设备上提供最新的mps支持。


1.Set up


Anaconda

Apple silicon

shell 复制代码
curl -O https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-arm64.sh
sh Miniconda3-latest-MacOSX-arm64.sh

x86

shell 复制代码
curl -O https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh
sh Miniconda3-latest-MacOSX-x86_64.sh

pip

您可以使用macOS附带的预装pip3。或者,您可以从Python网站或Homebrew包管理器安装它。


2.安装


Anaconda
shell 复制代码
conda install pytorch torchvision torchaudio -c pytorch-nightly

pip
shell 复制代码
pip3 install --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/cpu

从源代码构建

构建支持MPS的PyTorch需要Xcode13.3.1或更高版本,您可以在Mac App Store上下载最新的公开Xcode版本或在Mac App Store上下载最新的beta版本或在Apple Developer网站上下载最新的beta版本。
USE_MPS环境变量控制构建PyTorch并包含MPS支持。

要构建PyTorch,请按照PyTorch网站上提供的说明进行操作。


3.验证

您可以使用简单的Python脚本验证mps支持:

python 复制代码
import torch
if torch.backends.mps.is_available():
    mps_device = torch.device("mps")
    x = torch.ones(1, device=mps_device)
    print (x)
else:
    print ("MPS device not found.")

输出应显示:

shell 复制代码
tensor([1.], device='mps:0')

反馈意见

MPS后端处于测试阶段,我们正在积极解决问题并修复错误。要报告问题,请使用标签为"模块:MP"的GitHub问题跟踪器


资源

PyTorch安装页面
PyTorch留档在MPS后端
添加一个新的PyTorch操作到MPS后端
PyTorch性能分析使用MPS分析器

相关推荐
腾视科技3 分钟前
AI NAS:当存储遇上智能,开启数据管理新纪元
大数据·人工智能·ai·nas·ai nas·ainas
海绵宝宝de派小星7 分钟前
手写实现一个简单神经网络
人工智能·深度学习·神经网络·ai
沐欣工作室_lvyiyi8 分钟前
基于窗函数法的FIR滤波器设计(论文+源码)
人工智能·matlab·毕业设计·语音识别·fir滤波器
啊阿狸不会拉杆11 分钟前
《计算机操作系统》第六章-输入输出系统
java·开发语言·c++·人工智能·嵌入式硬件·os·计算机操作系统
线束线缆组件品替网14 分钟前
Stewart Connector RJ45 以太网线缆高速接口设计解析
服务器·网络·人工智能·音视频·硬件工程·材料工程
果粒蹬i18 分钟前
你的第一个神经网络:用PyTorch/Keras实现手写数字识别
pytorch·神经网络·keras
AI即插即用22 分钟前
即插即用系列 | AAAI 2025 Mesorch:CNN与Transformer的双剑合璧:基于频域增强与自适应剪枝的篡改定位
人工智能·深度学习·神经网络·计算机视觉·cnn·transformer·剪枝
应用市场26 分钟前
视频目标追踪完全指南:从原理到实战部署
人工智能·深度学习
@高手26 分钟前
AI应用开发基础
人工智能
wechat_Neal27 分钟前
供应商合作模式中以产品中心取向的转型要点2
人工智能·汽车·devops