Accelerated PyTorch training on Mac

本文翻译整理自:Accelerated PyTorch training on Mac
https://developer.apple.com/metal/pytorch/


文章目录


Metal 加速

PyTorch使用新的 Metal Performance Shaders(MPS)后端进行GPU训练加速。

这个MPS后端扩展了PyTorch框架,提供了在Mac上设置和运行操作的脚本和功能。

MPS框架使用针对每个Metal GPU系列的独特特性进行微调的内核来优化计算性能。

新的mps设备将机器学习计算图和原语映射到MPS Graph框架和MPS提供的调优内核上。


要求

  • 配备Apple芯片或AMD GPU的Mac电脑
  • macOS 12.3或更高版本
  • Python 3.7或更高版本
  • Xcode命令行工具:xcode-select --install

开始

您可以使用Anaconda或pip。请注意,带有Apple芯片的Mac和带有Intel x86的Mac之间的环境设置会有所不同。

使用安装页面上的PyTorch安装选择器为MPS设备加速选择预览(夜间)。MPS后端支持是PyTorch 1.12官方版本的一部分。PyTorch的预览(夜间)版本将在您的设备上提供最新的mps支持。


1.Set up


Anaconda

Apple silicon

shell 复制代码
curl -O https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-arm64.sh
sh Miniconda3-latest-MacOSX-arm64.sh

x86

shell 复制代码
curl -O https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh
sh Miniconda3-latest-MacOSX-x86_64.sh

pip

您可以使用macOS附带的预装pip3。或者,您可以从Python网站或Homebrew包管理器安装它。


2.安装


Anaconda
shell 复制代码
conda install pytorch torchvision torchaudio -c pytorch-nightly

pip
shell 复制代码
pip3 install --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/cpu

从源代码构建

构建支持MPS的PyTorch需要Xcode13.3.1或更高版本,您可以在Mac App Store上下载最新的公开Xcode版本或在Mac App Store上下载最新的beta版本或在Apple Developer网站上下载最新的beta版本。
USE_MPS环境变量控制构建PyTorch并包含MPS支持。

要构建PyTorch,请按照PyTorch网站上提供的说明进行操作。


3.验证

您可以使用简单的Python脚本验证mps支持:

python 复制代码
import torch
if torch.backends.mps.is_available():
    mps_device = torch.device("mps")
    x = torch.ones(1, device=mps_device)
    print (x)
else:
    print ("MPS device not found.")

输出应显示:

shell 复制代码
tensor([1.], device='mps:0')

反馈意见

MPS后端处于测试阶段,我们正在积极解决问题并修复错误。要报告问题,请使用标签为"模块:MP"的GitHub问题跟踪器


资源

PyTorch安装页面
PyTorch留档在MPS后端
添加一个新的PyTorch操作到MPS后端
PyTorch性能分析使用MPS分析器

相关推荐
m0_6501082412 小时前
Gemini 2.5:重塑多模态 AI 边界的全面解读
论文阅读·人工智能·多模态大模型·gemini 2.5·跨模态融合
wuk99813 小时前
基于Matlab的彩色图像特征提取实现
人工智能·计算机视觉·matlab
GEO_NEWS13 小时前
2025下半年GEO服务商技术革命:万数科技以AI全链路优化定义行业标杆
人工智能
说私域13 小时前
智能名片链动2+1模式S2B2C商城小程序:构建私域生态“留”量时代的新引擎
大数据·人工智能·小程序
说私域13 小时前
基于开源AI大模型与AI智能名片S2B2C商城小程序的直播简介引流策略研究——以B站直播为例
人工智能·小程序
金紫火13 小时前
AiPPT 新功能体验:从“一键生成”到更智能的演示制作
人工智能·ppt
Dev7z13 小时前
基于计算机视觉与机器学习的课堂坐姿智能监测与预警系统
人工智能·机器学习·计算机视觉
水如烟13 小时前
孤能子视角:“多劳多得”原则在知识经济时代的失效危机分析
人工智能
钟屿13 小时前
Back to Basics: Let Denoising Generative Models Denoise 论文阅读学习
论文阅读·人工智能·笔记·学习·计算机视觉
张较瘦_13 小时前
[论文阅读] AI + 数据库 | 拆解智能数据库:交互、管理、内核三层革新,AI 如何重塑数据处理
数据库·论文阅读·人工智能