Accelerated PyTorch training on Mac

本文翻译整理自:Accelerated PyTorch training on Mac
https://developer.apple.com/metal/pytorch/


文章目录


Metal 加速

PyTorch使用新的 Metal Performance Shaders(MPS)后端进行GPU训练加速。

这个MPS后端扩展了PyTorch框架,提供了在Mac上设置和运行操作的脚本和功能。

MPS框架使用针对每个Metal GPU系列的独特特性进行微调的内核来优化计算性能。

新的mps设备将机器学习计算图和原语映射到MPS Graph框架和MPS提供的调优内核上。


要求

  • 配备Apple芯片或AMD GPU的Mac电脑
  • macOS 12.3或更高版本
  • Python 3.7或更高版本
  • Xcode命令行工具:xcode-select --install

开始

您可以使用Anaconda或pip。请注意,带有Apple芯片的Mac和带有Intel x86的Mac之间的环境设置会有所不同。

使用安装页面上的PyTorch安装选择器为MPS设备加速选择预览(夜间)。MPS后端支持是PyTorch 1.12官方版本的一部分。PyTorch的预览(夜间)版本将在您的设备上提供最新的mps支持。


1.Set up


Anaconda

Apple silicon

shell 复制代码
curl -O https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-arm64.sh
sh Miniconda3-latest-MacOSX-arm64.sh

x86

shell 复制代码
curl -O https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh
sh Miniconda3-latest-MacOSX-x86_64.sh

pip

您可以使用macOS附带的预装pip3。或者,您可以从Python网站或Homebrew包管理器安装它。


2.安装


Anaconda
shell 复制代码
conda install pytorch torchvision torchaudio -c pytorch-nightly

pip
shell 复制代码
pip3 install --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/cpu

从源代码构建

构建支持MPS的PyTorch需要Xcode13.3.1或更高版本,您可以在Mac App Store上下载最新的公开Xcode版本或在Mac App Store上下载最新的beta版本或在Apple Developer网站上下载最新的beta版本。
USE_MPS环境变量控制构建PyTorch并包含MPS支持。

要构建PyTorch,请按照PyTorch网站上提供的说明进行操作。


3.验证

您可以使用简单的Python脚本验证mps支持:

python 复制代码
import torch
if torch.backends.mps.is_available():
    mps_device = torch.device("mps")
    x = torch.ones(1, device=mps_device)
    print (x)
else:
    print ("MPS device not found.")

输出应显示:

shell 复制代码
tensor([1.], device='mps:0')

反馈意见

MPS后端处于测试阶段,我们正在积极解决问题并修复错误。要报告问题,请使用标签为"模块:MP"的GitHub问题跟踪器


资源

PyTorch安装页面
PyTorch留档在MPS后端
添加一个新的PyTorch操作到MPS后端
PyTorch性能分析使用MPS分析器

相关推荐
小龙报几秒前
【数据结构与算法】单链表核心精讲:从概念到实战,吃透指针与动态内存操作
c语言·开发语言·数据结构·c++·人工智能·算法·链表
测试工程师成长之路1 分钟前
AI视觉模型如何重塑UI自动化测试:告别DOM依赖的新时代
人工智能·ui
编程小风筝1 分钟前
MAC物理地址和IP网络地址有什么区别?
网络协议·tcp/ip·macos
Code Slacker3 分钟前
第八届传智杯AI虚实共振实拍创作大赛练习题库
人工智能
格林威3 分钟前
Baumer相机碳纤维布纹方向识别:用于复合材料铺层校验的 5 个核心技巧,附 OpenCV+Halcon 实战代码!
人工智能·数码相机·opencv·算法·计算机视觉·视觉检测
人工智能培训4 分钟前
如何将模拟器中的技能有效迁移到物理世界?
人工智能·大模型·知识图谱·具身智能·人工智能 培训·企业人工智能培训
AI有元力5 分钟前
解锁AI营销新密码,GEO优化助力品牌连接精准AI买家
人工智能
GISer_Jing7 分钟前
原生HTML项目重构:Vue/React双框架实战
vue.js·人工智能·arcgis·重构·html
ZCXZ12385296a8 分钟前
YOLOv11-C3k2-wConv改进脐橙目标检测与分级模型研究
人工智能·yolo·目标检测
K姐研究社8 分钟前
实测 Kimi K2.5 ,最接近Gemini 3 Pro 的国产开源模型
人工智能