Accelerated PyTorch training on Mac

本文翻译整理自:Accelerated PyTorch training on Mac
https://developer.apple.com/metal/pytorch/


文章目录


Metal 加速

PyTorch使用新的 Metal Performance Shaders(MPS)后端进行GPU训练加速。

这个MPS后端扩展了PyTorch框架,提供了在Mac上设置和运行操作的脚本和功能。

MPS框架使用针对每个Metal GPU系列的独特特性进行微调的内核来优化计算性能。

新的mps设备将机器学习计算图和原语映射到MPS Graph框架和MPS提供的调优内核上。


要求

  • 配备Apple芯片或AMD GPU的Mac电脑
  • macOS 12.3或更高版本
  • Python 3.7或更高版本
  • Xcode命令行工具:xcode-select --install

开始

您可以使用Anaconda或pip。请注意,带有Apple芯片的Mac和带有Intel x86的Mac之间的环境设置会有所不同。

使用安装页面上的PyTorch安装选择器为MPS设备加速选择预览(夜间)。MPS后端支持是PyTorch 1.12官方版本的一部分。PyTorch的预览(夜间)版本将在您的设备上提供最新的mps支持。


1.Set up


Anaconda

Apple silicon

shell 复制代码
curl -O https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-arm64.sh
sh Miniconda3-latest-MacOSX-arm64.sh

x86

shell 复制代码
curl -O https://repo.anaconda.com/miniconda/Miniconda3-latest-MacOSX-x86_64.sh
sh Miniconda3-latest-MacOSX-x86_64.sh

pip

您可以使用macOS附带的预装pip3。或者,您可以从Python网站或Homebrew包管理器安装它。


2.安装


Anaconda
shell 复制代码
conda install pytorch torchvision torchaudio -c pytorch-nightly

pip
shell 复制代码
pip3 install --pre torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/nightly/cpu

从源代码构建

构建支持MPS的PyTorch需要Xcode13.3.1或更高版本,您可以在Mac App Store上下载最新的公开Xcode版本或在Mac App Store上下载最新的beta版本或在Apple Developer网站上下载最新的beta版本。
USE_MPS环境变量控制构建PyTorch并包含MPS支持。

要构建PyTorch,请按照PyTorch网站上提供的说明进行操作。


3.验证

您可以使用简单的Python脚本验证mps支持:

python 复制代码
import torch
if torch.backends.mps.is_available():
    mps_device = torch.device("mps")
    x = torch.ones(1, device=mps_device)
    print (x)
else:
    print ("MPS device not found.")

输出应显示:

shell 复制代码
tensor([1.], device='mps:0')

反馈意见

MPS后端处于测试阶段,我们正在积极解决问题并修复错误。要报告问题,请使用标签为"模块:MP"的GitHub问题跟踪器


资源

PyTorch安装页面
PyTorch留档在MPS后端
添加一个新的PyTorch操作到MPS后端
PyTorch性能分析使用MPS分析器

相关推荐
喜欢吃豆14 小时前
GraphRAG 技术教程:从核心概念到高级架构
人工智能·架构·大模型
王哈哈^_^14 小时前
YOLOv11视觉检测实战:安全距离测算全解析
人工智能·数码相机·算法·yolo·计算机视觉·目标跟踪·视觉检测
陈大头铃儿响叮当14 小时前
Mac 下配置Charles踩坑之旅
macos
AI浩14 小时前
FeatEnHancer:在低光视觉下增强目标检测及其他任务的分层特征
人工智能·目标检测·目标跟踪
深度学习lover14 小时前
<数据集>yolo航拍交通目标识别数据集<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·航拍交通目标识别
商汤万象开发者14 小时前
LazyLLM教程 | 第13讲:RAG+多模态:图片、表格通吃的问答系统
人工智能·科技·算法·开源·多模态
IT管理圈14 小时前
AI agent正在重塑组织:麦肯锡的“智能体组织“解读
人工智能
YuanDaima204814 小时前
[CrewAI] 第5课|基于多智能体构建一个 AI 客服支持系统
人工智能·笔记·多智能体·智能体·crewai