PyTorch 深度学习实践-逻辑斯蒂回归

视频指路
参考博客笔记
参考笔记二

用来分类的模型

说明:1、 逻辑斯蒂回归和线性模型的明显区别是在线性模型的后面,添加了激活函数(非线性变换)

​ 2、分布的差异:KL散度,cross-entropy交叉熵

现在损失函数衡量不是距离而是分布,所以要改为交叉熵

sigmod的函数是一个在生物学中常见的S型函数,也称为S型生长曲线。在信息科学中,由于其单增以及反函数单增等性质,常被用作神经网络的激活函数,将变量映射到0,1之间。-------------摘自《百度百科》

sigmod函数也叫作Logistic函数,用于隐层神经单元输出,取值范围为(0,1),它可以将一个实数映射到(0,1)的区间,可以用来做二分类。在特征相差比较复杂或者相差不是特别大的时候效果比较好。

类实现:

python 复制代码
class LogisticRegressionModel(torch.nn.Module):
    def __init__(self):
        super(LogisticRegressionModel, self).__init__()
        self.linear = torch.nn.Linear(1,1)
 
    def forward(self, x):
        # y_pred = F.sigmoid(self.linear(x))
        y_pred = torch.sigmoid(self.linear(x))
        return y_pred

model = LogisticRegressionModel()

总python实现

python 复制代码
import torch

# prepare dataset
x_data = torch.Tensor([[1.0], [2.0], [3.0]])
y_data = torch.Tensor([[0], [0], [1]])


# design model using class
class LogisticModel(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.linear = torch.nn.Linear(1, 1)

    def forward(self, x):
        y_pred = torch.sigmoid(self.linear(x))#线性层后面加一层非线性SIGMOD激活函数
        return y_pred

logistic = LogisticModel()

# construct loss and optimizer
# reduction='mean'取平均  reduction='sum'求和 loss被累加
criterion = torch.nn.BCELoss(reduction='sum')
optimizer = torch.optim.SGD(logistic.parameters(), lr=0.01)

# training cycle forward, backward, update
for epoch in range(1000):
    y_pred = logistic(x_data)
    loss = criterion(y_pred, y_data)
    print(epoch, loss)

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

print("w= ", logistic.linear.weight.item())
print("b= ", logistic.linear.bias.item())
x_test = torch.Tensor([4.0])
y_pred = logistic(x_test)
print("y_pred= ", y_pred)
相关推荐
FriendshipT2 小时前
目标检测:使用自己的数据集微调DEIMv2进行物体检测
人工智能·pytorch·python·目标检测·计算机视觉
墨利昂5 小时前
Transformer架构:深度学习序列建模的革命性突破
深度学习·架构·transformer
我是李武涯5 小时前
PyTorch Dataloader工作原理 之 default collate_fn操作
pytorch·python·深度学习
无风听海5 小时前
神经网络之计算图repeat节点
人工智能·深度学习·神经网络
maxruan6 小时前
PyTorch学习
人工智能·pytorch·python·学习
MYX_3096 小时前
第三章 线型神经网络
深度学习·神经网络·学习·算法
应用市场9 小时前
GPS车辆实时定位与轨迹预测技术实现
深度学习
技术闲聊DD9 小时前
深度学习(5)-PyTorch 张量详细介绍
人工智能·pytorch·深度学习
XIAO·宝9 小时前
深度学习------YOLOv4
深度学习·yolo·目标跟踪
小白狮ww9 小时前
LiveCC 首个视频解说大模型开源,比赛视频也能轻松拿捏!
人工智能·深度学习·机器学习