PyTorch 深度学习实践-逻辑斯蒂回归

视频指路
参考博客笔记
参考笔记二

用来分类的模型

说明:1、 逻辑斯蒂回归和线性模型的明显区别是在线性模型的后面,添加了激活函数(非线性变换)

​ 2、分布的差异:KL散度,cross-entropy交叉熵

现在损失函数衡量不是距离而是分布,所以要改为交叉熵

sigmod的函数是一个在生物学中常见的S型函数,也称为S型生长曲线。在信息科学中,由于其单增以及反函数单增等性质,常被用作神经网络的激活函数,将变量映射到0,1之间。-------------摘自《百度百科》

sigmod函数也叫作Logistic函数,用于隐层神经单元输出,取值范围为(0,1),它可以将一个实数映射到(0,1)的区间,可以用来做二分类。在特征相差比较复杂或者相差不是特别大的时候效果比较好。

类实现:

python 复制代码
class LogisticRegressionModel(torch.nn.Module):
    def __init__(self):
        super(LogisticRegressionModel, self).__init__()
        self.linear = torch.nn.Linear(1,1)
 
    def forward(self, x):
        # y_pred = F.sigmoid(self.linear(x))
        y_pred = torch.sigmoid(self.linear(x))
        return y_pred

model = LogisticRegressionModel()

总python实现

python 复制代码
import torch

# prepare dataset
x_data = torch.Tensor([[1.0], [2.0], [3.0]])
y_data = torch.Tensor([[0], [0], [1]])


# design model using class
class LogisticModel(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.linear = torch.nn.Linear(1, 1)

    def forward(self, x):
        y_pred = torch.sigmoid(self.linear(x))#线性层后面加一层非线性SIGMOD激活函数
        return y_pred

logistic = LogisticModel()

# construct loss and optimizer
# reduction='mean'取平均  reduction='sum'求和 loss被累加
criterion = torch.nn.BCELoss(reduction='sum')
optimizer = torch.optim.SGD(logistic.parameters(), lr=0.01)

# training cycle forward, backward, update
for epoch in range(1000):
    y_pred = logistic(x_data)
    loss = criterion(y_pred, y_data)
    print(epoch, loss)

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

print("w= ", logistic.linear.weight.item())
print("b= ", logistic.linear.bias.item())
x_test = torch.Tensor([4.0])
y_pred = logistic(x_test)
print("y_pred= ", y_pred)
相关推荐
一百天成为python专家几秒前
python库之jieba 库
开发语言·人工智能·python·深度学习·机器学习·pycharm·python3.11
Blossom.11842 分钟前
用一张“冰裂纹”石墨烯薄膜,让被动散热也能做 AI 推理——基于亚波长裂纹等离激元的零功耗温度-逻辑门
人工智能·深度学习·神经网络·目标检测·机器学习·机器人·语音识别
cylat44 分钟前
Day59 经典时序预测模型3
人工智能·python·深度学习·神经网络
禺垣1 小时前
扩散模型(Diffusion Model)原理概述
深度学习
kyle~2 小时前
Opencv---深度学习开发
人工智能·深度学习·opencv·计算机视觉·机器人
运器1232 小时前
【一起来学AI大模型】PyTorch DataLoader 实战指南
大数据·人工智能·pytorch·python·深度学习·ai·ai编程
帅次3 小时前
系统分析师-计算机系统-输入输出系统
人工智能·分布式·深度学习·神经网络·架构·系统架构·硬件架构
AndrewHZ3 小时前
【图像处理基石】如何入门大规模三维重建?
人工智能·深度学习·大模型·llm·三维重建·立体视觉·大规模三维重建
cwn_4 小时前
回归(多项式回归)
人工智能·机器学习·数据挖掘·回归
AI街潜水的八角5 小时前
深度学习图像分类数据集—五种电器识别分类
人工智能·深度学习·分类