PyTorch 深度学习实践-逻辑斯蒂回归

视频指路
参考博客笔记
参考笔记二

用来分类的模型

说明:1、 逻辑斯蒂回归和线性模型的明显区别是在线性模型的后面,添加了激活函数(非线性变换)

​ 2、分布的差异:KL散度,cross-entropy交叉熵

现在损失函数衡量不是距离而是分布,所以要改为交叉熵

sigmod的函数是一个在生物学中常见的S型函数,也称为S型生长曲线。在信息科学中,由于其单增以及反函数单增等性质,常被用作神经网络的激活函数,将变量映射到0,1之间。-------------摘自《百度百科》

sigmod函数也叫作Logistic函数,用于隐层神经单元输出,取值范围为(0,1),它可以将一个实数映射到(0,1)的区间,可以用来做二分类。在特征相差比较复杂或者相差不是特别大的时候效果比较好。

类实现:

python 复制代码
class LogisticRegressionModel(torch.nn.Module):
    def __init__(self):
        super(LogisticRegressionModel, self).__init__()
        self.linear = torch.nn.Linear(1,1)
 
    def forward(self, x):
        # y_pred = F.sigmoid(self.linear(x))
        y_pred = torch.sigmoid(self.linear(x))
        return y_pred

model = LogisticRegressionModel()

总python实现

python 复制代码
import torch

# prepare dataset
x_data = torch.Tensor([[1.0], [2.0], [3.0]])
y_data = torch.Tensor([[0], [0], [1]])


# design model using class
class LogisticModel(torch.nn.Module):
    def __init__(self):
        super().__init__()
        self.linear = torch.nn.Linear(1, 1)

    def forward(self, x):
        y_pred = torch.sigmoid(self.linear(x))#线性层后面加一层非线性SIGMOD激活函数
        return y_pred

logistic = LogisticModel()

# construct loss and optimizer
# reduction='mean'取平均  reduction='sum'求和 loss被累加
criterion = torch.nn.BCELoss(reduction='sum')
optimizer = torch.optim.SGD(logistic.parameters(), lr=0.01)

# training cycle forward, backward, update
for epoch in range(1000):
    y_pred = logistic(x_data)
    loss = criterion(y_pred, y_data)
    print(epoch, loss)

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()

print("w= ", logistic.linear.weight.item())
print("b= ", logistic.linear.bias.item())
x_test = torch.Tensor([4.0])
y_pred = logistic(x_test)
print("y_pred= ", y_pred)
相关推荐
吾在学习路1 小时前
故事型总结:Swin Transformer 是如何打破 Vision Transformer 壁垒的?
人工智能·深度学习·transformer
F_D_Z2 小时前
岭回归(Ridge Regression)辨析
回归·kotlin·l2正则
山海青风3 小时前
人工智能基础与应用 - 数据处理、建模与预测流程 7 基础模型之回归模型
人工智能·数据挖掘·回归
万俟淋曦3 小时前
【论文速递】2025年第44周(Oct-26-Nov-01)(Robotics/Embodied AI/LLM)
人工智能·深度学习·ai·机器人·论文·具身智能·robotic
亚里随笔4 小时前
偏离主路径:RLVR在参数空间中的非主方向学习机制
人工智能·深度学习·学习
鲨莎分不晴4 小时前
深度学习轻量化算子:从公式证明到数值计算
人工智能·深度学习
Java后端的Ai之路4 小时前
【神经网络基础】-激活函数详解
人工智能·深度学习·神经网络·激活函数
噜~噜~噜~5 小时前
D-CBRS(Diverse Class-Balancing Reservoir Sampling )的个人理解
人工智能·深度学习·持续学习·cbrs·d-cbrs
Yeats_Liao5 小时前
MindSpore开发之路(十四):简化训练循环:高阶API `mindspore.Model` 的妙用
人工智能·python·深度学习
机器懒得学习6 小时前
WGAN-GP RVE 生成系统深度技术分析
python·深度学习·计算机视觉