计算机视觉篇2 图像分类

一、图像分类的基本概念

图像分类是指将输入的图像自动分类到预定义的一组类别中的过程。这个过程通常包括图像特征提取、特征表示和分类器三个主要步骤。图像分类的目标是让计算机能够识别并分类不同的图像,从而在各种应用场景中发挥作用,如智能监控、自动驾驶、医疗诊断等。

二、图像分类的流程

  1. 数据准备
    • 收集并准备用于训练和测试的图像数据集。数据集通常包括训练集、验证集和测试集。
    • 对图像数据进行预处理,如缩放、裁剪、归一化等,以适合输入模型。
  2. 特征提取
    • 使用特征提取算法将图像中的信息转换为特征向量。常用的特征提取算法包括SIFT、SURF、HOG等,以及深度学习中的卷积神经网络(CNN)。
    • CNN能够自动提取图像中的特征,并具有良好的特征提取能力和分类性能。
  3. 特征表示
    • 将提取出来的特征向量进行表示,如通过PCA、LDA等算法进行降维操作,以便于分类器进行分类。
  4. 分类器训练
    • 使用训练数据训练分类器。常用的分类器包括SVM、KNN、决策树、随机森林以及神经网络等。
    • 在深度学习中,CNN是图像分类任务中最常用的模型之一。
  5. 模型评估
    • 使用验证数据对训练得到的分类器进行评估。
    • 使用测试数据对训练好的分类器进行测试评估,评估模型的准确率、精度等指标。
  6. 模型应用
    • 将训练好的模型应用于实际图像分类任务中,对待分类的图像进行数字化、特征提取和分类预测等操作。
相关推荐
老兵发新帖11 分钟前
关于ONNX和pytorch,我们应该怎么做?结合训练和推理
人工智能
方安乐13 分钟前
杂记:对齐研究(AI alignment)
人工智能
方见华Richard41 分钟前
世毫九《认知几何学修订版:从离散概念网络到认知拓扑动力学》
人工智能·经验分享·交互·原型模式·空间计算
人工智能培训1 小时前
基于Transformer的人工智能模型搭建与fine-tuning
人工智能·深度学习·机器学习·transformer·知识图谱·数字孪生·大模型幻觉
emma羊羊1 小时前
【AI技术安全】
网络·人工智能·安全
玄同7651 小时前
告别 AgentExecutor:LangChain v1.0+ Agent 模块深度迁移指南与实战全解析
人工智能·语言模型·自然语言处理·langchain·nlp·agent·智能体
Fxrain1 小时前
[Reading Paper]FFA-Net
图像处理·人工智能·计算机视觉
GISer_Jing1 小时前
Memory、Rules、Skills、MCP如何重塑AI编程
前端·人工智能·aigc·ai编程
DS随心转APP1 小时前
ChatGPT和Gemini回答怎么导出
人工智能·ai·chatgpt·deepseek·ds随心转
大模型玩家七七1 小时前
向量数据库实战:从“看起来能用”到“真的能用”,中间隔着一堆坑
数据库·人工智能·python·深度学习·ai·oracle