计算机视觉篇2 图像分类

一、图像分类的基本概念

图像分类是指将输入的图像自动分类到预定义的一组类别中的过程。这个过程通常包括图像特征提取、特征表示和分类器三个主要步骤。图像分类的目标是让计算机能够识别并分类不同的图像,从而在各种应用场景中发挥作用,如智能监控、自动驾驶、医疗诊断等。

二、图像分类的流程

  1. 数据准备
    • 收集并准备用于训练和测试的图像数据集。数据集通常包括训练集、验证集和测试集。
    • 对图像数据进行预处理,如缩放、裁剪、归一化等,以适合输入模型。
  2. 特征提取
    • 使用特征提取算法将图像中的信息转换为特征向量。常用的特征提取算法包括SIFT、SURF、HOG等,以及深度学习中的卷积神经网络(CNN)。
    • CNN能够自动提取图像中的特征,并具有良好的特征提取能力和分类性能。
  3. 特征表示
    • 将提取出来的特征向量进行表示,如通过PCA、LDA等算法进行降维操作,以便于分类器进行分类。
  4. 分类器训练
    • 使用训练数据训练分类器。常用的分类器包括SVM、KNN、决策树、随机森林以及神经网络等。
    • 在深度学习中,CNN是图像分类任务中最常用的模型之一。
  5. 模型评估
    • 使用验证数据对训练得到的分类器进行评估。
    • 使用测试数据对训练好的分类器进行测试评估,评估模型的准确率、精度等指标。
  6. 模型应用
    • 将训练好的模型应用于实际图像分类任务中,对待分类的图像进行数字化、特征提取和分类预测等操作。
相关推荐
Σίσυφος19002 分钟前
PCL Point-to-Point ICP详解
人工智能·算法
PaperRed ai写作降重助手17 分钟前
AI 论文写作工具排名(实测不踩坑)
人工智能·aigc·ai写作·论文写作·智能降重·辅助写作·降重复率
ktoking17 分钟前
Stock Agent AI 模型的选股器实现 [五]
人工智能·python
qwy71522925816321 分钟前
10-图像的翻转
人工智能·opencv·计算机视觉
霍格沃兹测试学院-小舟畅学22 分钟前
Playwright企业级测试架构设计:模块化与可扩展性
人工智能·测试工具
卡奥斯开源社区官方27 分钟前
深度拆解:Clawdbot“集体永生”技术内核,是AI协同突破还是营销噱头?
人工智能
小W与影刀RPA30 分钟前
【影刀 RPA】 :文档敏感词批量替换,省时省力又高效
人工智能·python·低代码·自动化·rpa·影刀rpa
小咖自动剪辑43 分钟前
12306余票监控辅助工具详解:自动查询/多方案预约/到点提交
人工智能
得赢科技1 小时前
智能菜谱研发公司推荐 适配中小型餐饮
大数据·运维·人工智能
lovod1 小时前
视觉SLAM十四讲合集
计算机视觉·slam·视觉slam·g2o·ba·位姿图