计算机视觉篇2 图像分类

一、图像分类的基本概念

图像分类是指将输入的图像自动分类到预定义的一组类别中的过程。这个过程通常包括图像特征提取、特征表示和分类器三个主要步骤。图像分类的目标是让计算机能够识别并分类不同的图像,从而在各种应用场景中发挥作用,如智能监控、自动驾驶、医疗诊断等。

二、图像分类的流程

  1. 数据准备
    • 收集并准备用于训练和测试的图像数据集。数据集通常包括训练集、验证集和测试集。
    • 对图像数据进行预处理,如缩放、裁剪、归一化等,以适合输入模型。
  2. 特征提取
    • 使用特征提取算法将图像中的信息转换为特征向量。常用的特征提取算法包括SIFT、SURF、HOG等,以及深度学习中的卷积神经网络(CNN)。
    • CNN能够自动提取图像中的特征,并具有良好的特征提取能力和分类性能。
  3. 特征表示
    • 将提取出来的特征向量进行表示,如通过PCA、LDA等算法进行降维操作,以便于分类器进行分类。
  4. 分类器训练
    • 使用训练数据训练分类器。常用的分类器包括SVM、KNN、决策树、随机森林以及神经网络等。
    • 在深度学习中,CNN是图像分类任务中最常用的模型之一。
  5. 模型评估
    • 使用验证数据对训练得到的分类器进行评估。
    • 使用测试数据对训练好的分类器进行测试评估,评估模型的准确率、精度等指标。
  6. 模型应用
    • 将训练好的模型应用于实际图像分类任务中,对待分类的图像进行数字化、特征提取和分类预测等操作。
相关推荐
开源技术23 分钟前
深入了解Turso,这个“用Rust重写的SQLite”
人工智能·python
初恋叫萱萱24 分钟前
构建高性能生成式AI应用:基于Rust Axum与蓝耘DeepSeek-V3.2大模型服务的全栈开发实战
开发语言·人工智能·rust
水如烟8 小时前
孤能子视角:“组织行为学–组织文化“
人工智能
大山同学8 小时前
图片补全-Context Encoder
人工智能·机器学习·计算机视觉
薛定谔的猫19828 小时前
十七、用 GPT2 中文对联模型实现经典上联自动对下联:
人工智能·深度学习·gpt2·大模型 训练 调优
壮Sir不壮8 小时前
2026年奇点:Clawdbot引爆个人AI代理
人工智能·ai·大模型·claude·clawdbot·moltbot·openclaw
PaperRed ai写作降重助手8 小时前
高性价比 AI 论文写作软件推荐:2026 年预算友好型
人工智能·aigc·论文·写作·ai写作·智能降重
玉梅小洋8 小时前
Claude Code 从入门到精通(七):Sub Agent 与 Skill 终极PK
人工智能·ai·大模型·ai编程·claude·ai工具
-嘟囔着拯救世界-8 小时前
【保姆级教程】Win11 下从零部署 Claude Code:本地环境配置 + VSCode 可视化界面全流程指南
人工智能·vscode·ai·编辑器·html5·ai编程·claude code
正见TrueView8 小时前
程一笑的价值选择:AI金玉其外,“收割”老人败絮其中
人工智能