计算机视觉篇2 图像分类

一、图像分类的基本概念

图像分类是指将输入的图像自动分类到预定义的一组类别中的过程。这个过程通常包括图像特征提取、特征表示和分类器三个主要步骤。图像分类的目标是让计算机能够识别并分类不同的图像,从而在各种应用场景中发挥作用,如智能监控、自动驾驶、医疗诊断等。

二、图像分类的流程

  1. 数据准备
    • 收集并准备用于训练和测试的图像数据集。数据集通常包括训练集、验证集和测试集。
    • 对图像数据进行预处理,如缩放、裁剪、归一化等,以适合输入模型。
  2. 特征提取
    • 使用特征提取算法将图像中的信息转换为特征向量。常用的特征提取算法包括SIFT、SURF、HOG等,以及深度学习中的卷积神经网络(CNN)。
    • CNN能够自动提取图像中的特征,并具有良好的特征提取能力和分类性能。
  3. 特征表示
    • 将提取出来的特征向量进行表示,如通过PCA、LDA等算法进行降维操作,以便于分类器进行分类。
  4. 分类器训练
    • 使用训练数据训练分类器。常用的分类器包括SVM、KNN、决策树、随机森林以及神经网络等。
    • 在深度学习中,CNN是图像分类任务中最常用的模型之一。
  5. 模型评估
    • 使用验证数据对训练得到的分类器进行评估。
    • 使用测试数据对训练好的分类器进行测试评估,评估模型的准确率、精度等指标。
  6. 模型应用
    • 将训练好的模型应用于实际图像分类任务中,对待分类的图像进行数字化、特征提取和分类预测等操作。
相关推荐
小雷FansUnion13 分钟前
深入理解MCP架构:智能服务编排、上下文管理与动态路由实战
人工智能·架构·大模型·mcp
资讯分享周16 分钟前
扣子空间PPT生产力升级:AI智能生成与多模态创作新时代
人工智能·powerpoint
叶子爱分享1 小时前
计算机视觉与图像处理的关系
图像处理·人工智能·计算机视觉
鱼摆摆拜拜1 小时前
第 3 章:神经网络如何学习
人工智能·神经网络·学习
一只鹿鹿鹿1 小时前
信息化项目验收,软件工程评审和检查表单
大数据·人工智能·后端·智慧城市·软件工程
张较瘦_2 小时前
[论文阅读] 人工智能 | 深度学习系统崩溃恢复新方案:DaiFu框架的原位修复技术
论文阅读·人工智能·深度学习
cver1232 小时前
野生动物检测数据集介绍-5,138张图片 野生动物保护监测 智能狩猎相机系统 生态研究与调查
人工智能·pytorch·深度学习·目标检测·计算机视觉·目标跟踪
学技术的大胜嗷2 小时前
离线迁移 Conda 环境到 Windows 服务器:用 conda-pack 摆脱硬路径限制
人工智能·深度学习·yolo·目标检测·机器学习
还有糕手2 小时前
西南交通大学【机器学习实验10】
人工智能·机器学习
江瀚视野2 小时前
百度文心大模型4.5系列正式开源,开源会给百度带来什么?
人工智能