计算机视觉篇2 图像分类

一、图像分类的基本概念

图像分类是指将输入的图像自动分类到预定义的一组类别中的过程。这个过程通常包括图像特征提取、特征表示和分类器三个主要步骤。图像分类的目标是让计算机能够识别并分类不同的图像,从而在各种应用场景中发挥作用,如智能监控、自动驾驶、医疗诊断等。

二、图像分类的流程

  1. 数据准备
    • 收集并准备用于训练和测试的图像数据集。数据集通常包括训练集、验证集和测试集。
    • 对图像数据进行预处理,如缩放、裁剪、归一化等,以适合输入模型。
  2. 特征提取
    • 使用特征提取算法将图像中的信息转换为特征向量。常用的特征提取算法包括SIFT、SURF、HOG等,以及深度学习中的卷积神经网络(CNN)。
    • CNN能够自动提取图像中的特征,并具有良好的特征提取能力和分类性能。
  3. 特征表示
    • 将提取出来的特征向量进行表示,如通过PCA、LDA等算法进行降维操作,以便于分类器进行分类。
  4. 分类器训练
    • 使用训练数据训练分类器。常用的分类器包括SVM、KNN、决策树、随机森林以及神经网络等。
    • 在深度学习中,CNN是图像分类任务中最常用的模型之一。
  5. 模型评估
    • 使用验证数据对训练得到的分类器进行评估。
    • 使用测试数据对训练好的分类器进行测试评估,评估模型的准确率、精度等指标。
  6. 模型应用
    • 将训练好的模型应用于实际图像分类任务中,对待分类的图像进行数字化、特征提取和分类预测等操作。
相关推荐
用户691581141651 小时前
Ascend Extension for PyTorch的源码解析
人工智能
用户691581141651 小时前
Ascend C的编程模型
人工智能
成富2 小时前
文本转SQL(Text-to-SQL),场景介绍与 Spring AI 实现
数据库·人工智能·sql·spring·oracle
CSDN云计算2 小时前
如何以开源加速AI企业落地,红帽带来新解法
人工智能·开源·openshift·红帽·instructlab
艾派森2 小时前
大数据分析案例-基于随机森林算法的智能手机价格预测模型
人工智能·python·随机森林·机器学习·数据挖掘
hairenjing11232 小时前
在 Android 手机上从SD 卡恢复数据的 6 个有效应用程序
android·人工智能·windows·macos·智能手机
小蜗子2 小时前
Multi‐modal knowledge graph inference via media convergenceand logic rule
人工智能·知识图谱
SpikeKing2 小时前
LLM - 使用 LLaMA-Factory 微调大模型 环境配置与训练推理 教程 (1)
人工智能·llm·大语言模型·llama·环境配置·llamafactory·训练框架
黄焖鸡能干四碗3 小时前
信息化运维方案,实施方案,开发方案,信息中心安全运维资料(软件资料word)
大数据·人工智能·软件需求·设计规范·规格说明书
3 小时前
开源竞争-数据驱动成长-11/05-大专生的思考
人工智能·笔记·学习·算法·机器学习