《昇思 25 天学习打卡营第 14 天 | 基于MindSpore的红酒分类实验 》

《昇思 25 天学习打卡营第 14 天 | 基于MindSpore的红酒分类实验 》

活动地址:https://xihe.mindspore.cn/events/mindspore-training-camp

签名:Sam9029


使用MindSpore实现K近邻(KNN)红酒聚类

实验目的和KNN算法概述

本次实验的目的是了解K近邻(K-Nearest Neighbors, KNN)算法的基本概念,并学习如何使用华为的MindSpore框架实现KNN实验。KNN是一种基础的分类和回归算法,通过计算测试样本与训练样本之间的距离,找出最近的K个邻居,并通过多数表决的方式确定测试样本的类别。

KNN算法原理

KNN算法的三个关键要素包括:

  • K值:邻居的数量,决定了分类的依据。
  • 距离度量:如欧氏距离,反映样本间的相似度。
  • 分类决策规则:通常是多数表决,也可以是基于距离加权的表决。

在分类问题中,KNN的流程包括:

  1. 找出测试样本最近的K个训练样本。
  2. 统计这些邻居中各类样本的数量。
  3. 选择数量最多的类别作为测试样本的预测类别。
实验环境和数据处理

实验使用MindSpore 2.0环境,支持多种操作系统和硬件平台。数据集选用了著名的Wine数据集,包含178个样本,每个样本有13个属性,并分为3个类别。

数据处理步骤包括:

  • 读取数据集并将其分为训练集和测试集。
  • 将属性作为自变量X,类别作为因变量Y。
  • 可视化部分数据,以理解样本分布。
模型构建和距离计算

在MindSpore中构建KNN模型需要实现距离的计算和最近邻的索引获取。通过以下步骤实现:

  • 使用tilesquare操作平铺输入样本并计算平方差。
  • 通过ReduceSumsqrt计算样本间的欧氏距离。
  • 使用TopK操作找出最近的K个邻居。
模型预测和评估

实验中,使用K=5在测试集上进行预测,并通过准确率评估模型性能。代码中定义了KnnNet类和knn函数来执行KNN预测。

通过本次实验,成功地使用MindSpore实现了KNN算法,并在Wine数据集上进行了红酒聚类实验。实验结果显示,KNN算法能够有效地根据酒的13种属性判断其品种,验证了算法的有效性。

思考
  • K值选择:K值的选择对模型性能有显著影响。过小的K值可能使模型对噪声敏感,而过大的K值可能导致类别界限模糊。实践中,可以通过交叉验证来选择最优的K值。
  • 距离度量:除了欧氏距离,还可以尝试其他距离度量方法,如曼哈顿距离或余弦相似度,以观察不同距离度量对结果的影响。
  • 特征缩放:KNN对特征的尺度敏感,因此在应用KNN之前,通常需要对特征进行标准化或归一化处理。
  • 算法改进:可以探索加权KNN,其中每个邻居的投票权重与其距离成反比,以提高模型的预测精度。

KNN作为一种简单直观的机器学习算法,在许多分类问题中都有应用。通过本次实验,不仅学习了KNN的基本原理,还掌握了如何在MindSpore框架下实现和评估KNN模型。未来的工作可以探索更多的特征工程技巧和算法变体,以进一步提高模型性能。

相关推荐
2501_9153738810 分钟前
Node.js 学习入门指南
学习·node.js
旧故新长17 分钟前
支持Function Call的本地ollama模型对比评测-》开发代理agent
人工智能·深度学习·机器学习
绵绵细雨中的乡音38 分钟前
Linux进程学习【基本认知】
linux·运维·学习
一只可爱的小猴子1 小时前
2022李宏毅老师机器学习课程笔记
人工智能·笔记·机器学习
爱研究的小陈2 小时前
Day 4:机器学习初探——从监督学习到无监督学习
机器学习
我的golang之路果然有问题2 小时前
快速了解redis,个人笔记
数据库·经验分享·redis·笔记·学习·缓存·内存
Blossom.1183 小时前
人工智能在智能家居中的应用与发展
人工智能·深度学习·机器学习·智能家居·vr·虚拟现实·多模态融合
薄荷很无奈3 小时前
CuML + Cudf (RAPIDS) 加速python数据分析脚本
python·机器学习·数据分析·gpu算力
Angindem4 小时前
SpringClound 微服务分布式Nacos学习笔记
分布式·学习·微服务