点到点、点到线、点到线的ICP区别

区别主要是在于源点云src经过一个初始变换后,与target点云(或者说是模板)之间的差异定义上。

1. 点到点

首先,将待匹配点云中的每个点Pi,利用初始的旋转矩阵和平移向量转换到目标点云Q中.

在Q中找出与Pi最近的点(记作Qi),作为Pi的对应点,取Pi、Qi之间的欧式距离作为匹配误差。

2. 点到线

点-线的情况:

​ 首先,将待匹配点云中的每个点Pi,利用初始的旋转矩阵和平移向量转换到目标点云Q中。对于Pi利用KD树的算法寻找到最近的几个点,根据这几个点计算出协方差,将协方差进行奇异值分解,如果最大的奇异值比第二大的奇异值要大得多,则认为找到的这几个点是在同一条直线上。

匹配误差为点到直线的距离,即图中的向量dc的模。

3. 点到面

点-面的情况:

​ 首先,将待匹配点云中的每个点Pi,利用初始的旋转矩阵和平移向量转换到目标点云Q中。对于Pi利用KD树的算法寻找到最近的几个点,根据这几个点计算出协方差,将协方差进行奇异值分解,根据这几个点计算出协方差,将协方差进行奇异值分解,如果最小的奇异值比第二小的奇异值要小得多,则认为找到的这几个点是在同一个平面上。

匹配误差为点到面的距离,即图中的向量od的模。

4 对比

对于上述3种方法,哪一种最适合?其实是要看具体的点云场景的,它与点云的几何形态有关系。

有的点云适合使用点到点,有的适合使用点到线,有的适合使用点到面。脱离具体场景谈算法效果其实是不够科学的。

在普通常见场合,可以率先尝试点到面。

相关推荐
Lips61110 小时前
2026.1.20力扣刷题笔记
笔记·算法·leetcode
心态与习惯10 小时前
深度学习中的 seq2seq 模型
人工智能·深度学习·seq2seq
2501_9413297210 小时前
YOLOv8-LADH马匹检测识别算法详解与实现
算法·yolo·目标跟踪
洛生&10 小时前
Planets Queries II(倍增,基环内向森林)
算法
Coder_Boy_11 小时前
基于SpringAI的在线考试系统-0到1全流程研发:DDD、TDD与CICD协同实践
java·人工智能·spring boot·架构·ddd·tdd
小郭团队11 小时前
1_6_五段式SVPWM (传统算法反正切+DPWM2)算法理论与 MATLAB 实现详解
嵌入式硬件·算法·matlab·dsp开发
北京耐用通信11 小时前
耐达讯自动化Profibus总线光纤中继器:光伏逆变器通讯的“稳定纽带”
人工智能·物联网·网络协议·自动化·信息与通信
小郭团队11 小时前
1_7_五段式SVPWM (传统算法反正切+DPWM3)算法理论与 MATLAB 实现详解
开发语言·嵌入式硬件·算法·matlab·dsp开发
鱼跃鹰飞11 小时前
Leetcode347:前K个高频元素
数据结构·算法·leetcode·面试
bybitq11 小时前
LeetCode236-二叉树的最近公共祖先(LCA)问题详解-C++
算法·深度优先