点到点、点到线、点到线的ICP区别

区别主要是在于源点云src经过一个初始变换后,与target点云(或者说是模板)之间的差异定义上。

1. 点到点

首先,将待匹配点云中的每个点Pi,利用初始的旋转矩阵和平移向量转换到目标点云Q中.

在Q中找出与Pi最近的点(记作Qi),作为Pi的对应点,取Pi、Qi之间的欧式距离作为匹配误差。

2. 点到线

点-线的情况:

​ 首先,将待匹配点云中的每个点Pi,利用初始的旋转矩阵和平移向量转换到目标点云Q中。对于Pi利用KD树的算法寻找到最近的几个点,根据这几个点计算出协方差,将协方差进行奇异值分解,如果最大的奇异值比第二大的奇异值要大得多,则认为找到的这几个点是在同一条直线上。

匹配误差为点到直线的距离,即图中的向量dc的模。

3. 点到面

点-面的情况:

​ 首先,将待匹配点云中的每个点Pi,利用初始的旋转矩阵和平移向量转换到目标点云Q中。对于Pi利用KD树的算法寻找到最近的几个点,根据这几个点计算出协方差,将协方差进行奇异值分解,根据这几个点计算出协方差,将协方差进行奇异值分解,如果最小的奇异值比第二小的奇异值要小得多,则认为找到的这几个点是在同一个平面上。

匹配误差为点到面的距离,即图中的向量od的模。

4 对比

对于上述3种方法,哪一种最适合?其实是要看具体的点云场景的,它与点云的几何形态有关系。

有的点云适合使用点到点,有的适合使用点到线,有的适合使用点到面。脱离具体场景谈算法效果其实是不够科学的。

在普通常见场合,可以率先尝试点到面。

相关推荐
SweetCode3 分钟前
裴蜀定理:整数解的奥秘
数据结构·python·线性代数·算法·机器学习
程序员Linc16 分钟前
写给新人的深度学习扫盲贴:向量与矩阵
人工智能·深度学习·矩阵·向量
ゞ 正在缓冲99%…16 分钟前
leetcode76.最小覆盖子串
java·算法·leetcode·字符串·双指针·滑动窗口
xuanjiong17 分钟前
纯个人整理,蓝桥杯使用的算法模板day2(0-1背包问题),手打个人理解注释,超全面,且均已验证成功(附带详细手写“模拟流程图”,全网首个
算法·蓝桥杯·动态规划
xcLeigh24 分钟前
OpenCV从零开始:30天掌握图像处理基础
图像处理·人工智能·python·opencv
果冻人工智能27 分钟前
如何有效应对 RAG 中的复杂查询?
人工智能
2305_7978820936 分钟前
AI识图小程序的功能框架设计
人工智能·微信小程序·小程序
惊鸿.Jh36 分钟前
【滑动窗口】3254. 长度为 K 的子数组的能量值 I
数据结构·算法·leetcode
明灯L37 分钟前
《函数基础与内存机制深度剖析:从 return 语句到各类经典编程题详解》
经验分享·python·算法·链表·经典例题
果冻人工智能37 分钟前
向量搜索中常见的8个错误(以及如何避免它们)
人工智能