点到点、点到线、点到线的ICP区别

区别主要是在于源点云src经过一个初始变换后,与target点云(或者说是模板)之间的差异定义上。

1. 点到点

首先,将待匹配点云中的每个点Pi,利用初始的旋转矩阵和平移向量转换到目标点云Q中.

在Q中找出与Pi最近的点(记作Qi),作为Pi的对应点,取Pi、Qi之间的欧式距离作为匹配误差。

2. 点到线

点-线的情况:

​ 首先,将待匹配点云中的每个点Pi,利用初始的旋转矩阵和平移向量转换到目标点云Q中。对于Pi利用KD树的算法寻找到最近的几个点,根据这几个点计算出协方差,将协方差进行奇异值分解,如果最大的奇异值比第二大的奇异值要大得多,则认为找到的这几个点是在同一条直线上。

匹配误差为点到直线的距离,即图中的向量dc的模。

3. 点到面

点-面的情况:

​ 首先,将待匹配点云中的每个点Pi,利用初始的旋转矩阵和平移向量转换到目标点云Q中。对于Pi利用KD树的算法寻找到最近的几个点,根据这几个点计算出协方差,将协方差进行奇异值分解,根据这几个点计算出协方差,将协方差进行奇异值分解,如果最小的奇异值比第二小的奇异值要小得多,则认为找到的这几个点是在同一个平面上。

匹配误差为点到面的距离,即图中的向量od的模。

4 对比

对于上述3种方法,哪一种最适合?其实是要看具体的点云场景的,它与点云的几何形态有关系。

有的点云适合使用点到点,有的适合使用点到线,有的适合使用点到面。脱离具体场景谈算法效果其实是不够科学的。

在普通常见场合,可以率先尝试点到面。

相关推荐
黎燃7 小时前
短视频平台内容推荐算法优化:从协同过滤到多模态深度学习
人工智能
飞哥数智坊8 小时前
多次尝试用 CodeBuddy 做小程序,最终我放弃了
人工智能·ai编程
后端小肥肠9 小时前
别再眼馋 10w + 治愈漫画!Coze 工作流 3 分钟出成品,小白可学
人工智能·aigc·coze
唐某人丶11 小时前
教你如何用 JS 实现 Agent 系统(2)—— 开发 ReAct 版本的“深度搜索”
前端·人工智能·aigc
FIT2CLOUD飞致云12 小时前
九月月报丨MaxKB在不同规模医疗机构的应用进展汇报
人工智能·开源
阿里云大数据AI技术12 小时前
【新模型速递】PAI-Model Gallery云上一键部署Qwen3-Next系列模型
人工智能
袁庭新12 小时前
全球首位AI机器人部长,背负反腐重任
人工智能·aigc
机器之心12 小时前
谁说Scaling Law到头了?新研究:每一步的微小提升会带来指数级增长
人工智能·openai
算家计算13 小时前
AI配音革命!B站最新开源IndexTTS2本地部署教程:精准对口型,情感随心换
人工智能·开源·aigc
量子位13 小时前
马斯克周末血裁xAI 500人
人工智能·ai编程