点到点、点到线、点到线的ICP区别

区别主要是在于源点云src经过一个初始变换后,与target点云(或者说是模板)之间的差异定义上。

1. 点到点

首先,将待匹配点云中的每个点Pi,利用初始的旋转矩阵和平移向量转换到目标点云Q中.

在Q中找出与Pi最近的点(记作Qi),作为Pi的对应点,取Pi、Qi之间的欧式距离作为匹配误差。

2. 点到线

点-线的情况:

​ 首先,将待匹配点云中的每个点Pi,利用初始的旋转矩阵和平移向量转换到目标点云Q中。对于Pi利用KD树的算法寻找到最近的几个点,根据这几个点计算出协方差,将协方差进行奇异值分解,如果最大的奇异值比第二大的奇异值要大得多,则认为找到的这几个点是在同一条直线上。

匹配误差为点到直线的距离,即图中的向量dc的模。

3. 点到面

点-面的情况:

​ 首先,将待匹配点云中的每个点Pi,利用初始的旋转矩阵和平移向量转换到目标点云Q中。对于Pi利用KD树的算法寻找到最近的几个点,根据这几个点计算出协方差,将协方差进行奇异值分解,根据这几个点计算出协方差,将协方差进行奇异值分解,如果最小的奇异值比第二小的奇异值要小得多,则认为找到的这几个点是在同一个平面上。

匹配误差为点到面的距离,即图中的向量od的模。

4 对比

对于上述3种方法,哪一种最适合?其实是要看具体的点云场景的,它与点云的几何形态有关系。

有的点云适合使用点到点,有的适合使用点到线,有的适合使用点到面。脱离具体场景谈算法效果其实是不够科学的。

在普通常见场合,可以率先尝试点到面。

相关推荐
小小工匠几秒前
大模型开发 - 手写Manus之Tavily搜索工具:04 让AI Agent接入互联网
人工智能·搜索·tavily
TMT星球1 分钟前
豆包除夕AI互动19亿次,Seedance2.0为春晚提供技术支持
人工智能
爱编程的Zion3 分钟前
小白AI学习笔记---第一章,如何正确使用
人工智能·笔记·学习
追随者永远是胜利者6 分钟前
(LeetCode-Hot100)22. 括号生成
java·算法·leetcode·职场和发展·go
新缸中之脑7 分钟前
构建有长期记忆的AI代理
人工智能
CHANG_THE_WORLD15 分钟前
多维数组传参为什么使用列指针?—— 深度解析
数据结构·算法
LedgerNinja20 分钟前
从用户规模到技术选择:一家交易平台在2025年的发展样本
人工智能
媒体人88826 分钟前
孟庆涛:生成式引擎优化(GEO)的投毒攻击防御策略研究
大数据·人工智能·搜索引擎·生成式引擎优化·geo优化
2501_9453184930 分钟前
产品经理系统学习AI的必要性与核心内容
人工智能·学习·产品经理
志栋智能33 分钟前
AI驱动的自动化运维机器人:从“数字劳动力”到“智能协作者”的进化
大数据·运维·网络·人工智能·机器人·自动化