医学深度学习与机器学习融合的随想

医学深度学习与机器学习融合的随想

近年来,深度学习(图像类)和机器学习在医学领域的应用取得了飞速发展,为医学影像分析、疾病诊断和预后预测等领域带来了革命性的变革。深度学习擅长从复杂数据中提取高层次特征,而机器学习则擅长利用这些特征进行建模和预测。将两者融合,可以发挥各自的优势,为医学研究和临床实践带来新的突破。

深度学习转变为特征提取的工具

目前,深度学习主要的任务是使用算法完成人类可以完成,但是相对费时费力的任务,比如更准确地识别病灶、自动化提供诊断报告等;而在深度学习与机器学习融合的模式中,深度学习的变为特征提取工具,其主要功能是从图片视频中提取不同深度的特征,为机器学习模型提供特征数据,进而完成疾病诊断或者预后预测的任务。

深度学习与机器学习的融合模式

根据深度学习提取的特征的不同,深度学习与机器学习的融合主要有以下三种模式:

  1. **简单的拼接:**深度学习模型首先对原始数据进行处理,提取特征,所提取的特征还是在重复人类的工作,比如,影像诊断的结果,然后将提取的特征输入到机器学习模型中进行后续的分析和预测。这种模式是简单地将深度学习和机器学习纳入到一个工作流中,保持了 目前深度学习和机器学习各自的模式。

  2. **调整的拼接:**深度学习模型提取的特征不再是简单地替代人类工作的结果,而是从机器的角度提取一些人类难以获得的信息。例如,可以利用深度学习模型计算病理切片中正在分裂的癌细胞的比例,但是这些特征还是人类设计出来的,认为对疾病诊断和预后预测有用的特征,然后,将这些特征输入到机器学习模型中,进行疾病诊断和预后预测。这种模式更大程度发挥深度学习模型的优势,有望提取更具特异性和判别性的特征。

  3. **深度学习与机器学习一体化:**深度学习模型提取的特征是人类难以理解的特征,也不是人类设计的, 但机器学习模型可以有效地利用这些特征进行学习和预测。这种模式代表了深度学习与机器学习融合的最高境界。

未来展望

将深度学习和机器学习放在一起比较,深度学习的优势在于产生数据,目前用深度学习来重复人类的工作,显然是大才小用,应该利用深度学习算法提取人类所认识不到的特征,而机器学习的优势在于使用数据,而目前局限于医学临床数据特异性和准确性的不足,机器学习算法无法准确地诊断疾病和预后预测, 两者的融合互补,将为人工智能在医学中的应用带来新的契机。

  • 一方面,深度学习模型将更加智能,能够从医学数据中提取更加丰富和精准的特征信息,有些可能是人类所无法理解的。
  • 另一方面,机器学习模型预测和诊断因为使用了更加具有疾病特异性的特征,对疾病的诊断和预后的预测将更加准确。

结论

深度学习与机器学习的融合是医学领域发展的重要趋势之一。通过将两者结合起来,我们可以从医学数据中提取更多有价值的信息,为疾病诊断、预后预测和治疗等提供更加有效的工具。相信在不久的将来,深度学习与机器学习将为医学带来更加革命性的变革。

相关推荐
凡人的AI工具箱5 分钟前
每天40分玩转Django:Django类视图
数据库·人工智能·后端·python·django·sqlite
千天夜11 分钟前
深度学习中的残差网络、加权残差连接(WRC)与跨阶段部分连接(CSP)详解
网络·人工智能·深度学习·神经网络·yolo·机器学习
一勺汤12 分钟前
YOLOv8模型改进 第二十五讲 添加基于卷积调制(Convolution based Attention) 替换自注意力机制
深度学习·yolo·计算机视觉·模块·yolov8·yolov8改进·魔改
凡人的AI工具箱15 分钟前
每天40分玩转Django:实操图片分享社区
数据库·人工智能·后端·python·django
小军军军军军军19 分钟前
MLU运行Stable Diffusion WebUI Forge【flux】
人工智能·python·语言模型·stable diffusion
Kenneth風车33 分钟前
【机器学习(九)】分类和回归任务-多层感知机(Multilayer Perceptron,MLP)算法-Sentosa_DSML社区版 (1)11
算法·机器学习·分类
诚威_lol_中大努力中42 分钟前
关于VQ-GAN利用滑动窗口生成 高清图像
人工智能·神经网络·生成对抗网络
中关村科金1 小时前
中关村科金智能客服机器人如何解决客户个性化需求与标准化服务之间的矛盾?
人工智能·机器人·在线客服·智能客服机器人·中关村科金
逸_1 小时前
Product Hunt 今日热榜 | 2024-12-25
人工智能
Luke Ewin1 小时前
基于3D-Speaker进行区分说话人项目搭建过程报错记录 | 通话录音说话人区分以及语音识别 | 声纹识别以及语音识别 | pyannote-audio
人工智能·语音识别·声纹识别·通话录音区分说话人