医学深度学习与机器学习融合的随想

医学深度学习与机器学习融合的随想

近年来,深度学习(图像类)和机器学习在医学领域的应用取得了飞速发展,为医学影像分析、疾病诊断和预后预测等领域带来了革命性的变革。深度学习擅长从复杂数据中提取高层次特征,而机器学习则擅长利用这些特征进行建模和预测。将两者融合,可以发挥各自的优势,为医学研究和临床实践带来新的突破。

深度学习转变为特征提取的工具

目前,深度学习主要的任务是使用算法完成人类可以完成,但是相对费时费力的任务,比如更准确地识别病灶、自动化提供诊断报告等;而在深度学习与机器学习融合的模式中,深度学习的变为特征提取工具,其主要功能是从图片视频中提取不同深度的特征,为机器学习模型提供特征数据,进而完成疾病诊断或者预后预测的任务。

深度学习与机器学习的融合模式

根据深度学习提取的特征的不同,深度学习与机器学习的融合主要有以下三种模式:

  1. **简单的拼接:**深度学习模型首先对原始数据进行处理,提取特征,所提取的特征还是在重复人类的工作,比如,影像诊断的结果,然后将提取的特征输入到机器学习模型中进行后续的分析和预测。这种模式是简单地将深度学习和机器学习纳入到一个工作流中,保持了 目前深度学习和机器学习各自的模式。

  2. **调整的拼接:**深度学习模型提取的特征不再是简单地替代人类工作的结果,而是从机器的角度提取一些人类难以获得的信息。例如,可以利用深度学习模型计算病理切片中正在分裂的癌细胞的比例,但是这些特征还是人类设计出来的,认为对疾病诊断和预后预测有用的特征,然后,将这些特征输入到机器学习模型中,进行疾病诊断和预后预测。这种模式更大程度发挥深度学习模型的优势,有望提取更具特异性和判别性的特征。

  3. **深度学习与机器学习一体化:**深度学习模型提取的特征是人类难以理解的特征,也不是人类设计的, 但机器学习模型可以有效地利用这些特征进行学习和预测。这种模式代表了深度学习与机器学习融合的最高境界。

未来展望

将深度学习和机器学习放在一起比较,深度学习的优势在于产生数据,目前用深度学习来重复人类的工作,显然是大才小用,应该利用深度学习算法提取人类所认识不到的特征,而机器学习的优势在于使用数据,而目前局限于医学临床数据特异性和准确性的不足,机器学习算法无法准确地诊断疾病和预后预测, 两者的融合互补,将为人工智能在医学中的应用带来新的契机。

  • 一方面,深度学习模型将更加智能,能够从医学数据中提取更加丰富和精准的特征信息,有些可能是人类所无法理解的。
  • 另一方面,机器学习模型预测和诊断因为使用了更加具有疾病特异性的特征,对疾病的诊断和预后的预测将更加准确。

结论

深度学习与机器学习的融合是医学领域发展的重要趋势之一。通过将两者结合起来,我们可以从医学数据中提取更多有价值的信息,为疾病诊断、预后预测和治疗等提供更加有效的工具。相信在不久的将来,深度学习与机器学习将为医学带来更加革命性的变革。

相关推荐
梓羽玩Python几秒前
一夜刷屏AI圈!Manus:这不是聊天机器人,是你的“AI打工仔”!
人工智能
Gene_INNOCENT1 分钟前
大型语言模型训练的三个阶段:Pre-Train、Instruction Fine-tuning、RLHF (PPO / DPO / GRPO)
人工智能·深度学习·语言模型
游戏智眼2 分钟前
中国团队发布通用型AI Agent产品Manus;GPT-4.5正式面向Plus用户推出;阿里发布并开源推理模型通义千问QwQ-32B...|游戏智眼日报
人工智能·游戏·游戏引擎·aigc
挣扎与觉醒中的技术人3 分钟前
如何优化FFmpeg拉流性能及避坑指南
人工智能·深度学习·性能优化·ffmpeg·aigc·ai编程
watersink7 分钟前
Dify框架下的基于RAG流程的政务检索平台
人工智能·深度学习·机器学习
脑极体10 分钟前
在MWC2025,读懂华为如何以行践言
大数据·人工智能·华为
DeepBI13 分钟前
AI+大数据:DeepBI重构竞品分析新思路
人工智能
KoiC15 分钟前
内网环境部署Deepseek+Dify,构建企业私有化AI应用
linux·人工智能·ubuntu·docker·大模型·ai应用·deepseek
lizz3117 分钟前
机器学习中的线性代数:奇异值分解 SVD
线性代数·算法·机器学习
程序员Linc26 分钟前
计算机视觉 vs 机器视觉 | 机器学习 vs 深度学习:核心差异与行业启示
深度学习·机器学习·计算机视觉·机器视觉