医学深度学习与机器学习融合的随想

医学深度学习与机器学习融合的随想

近年来,深度学习(图像类)和机器学习在医学领域的应用取得了飞速发展,为医学影像分析、疾病诊断和预后预测等领域带来了革命性的变革。深度学习擅长从复杂数据中提取高层次特征,而机器学习则擅长利用这些特征进行建模和预测。将两者融合,可以发挥各自的优势,为医学研究和临床实践带来新的突破。

深度学习转变为特征提取的工具

目前,深度学习主要的任务是使用算法完成人类可以完成,但是相对费时费力的任务,比如更准确地识别病灶、自动化提供诊断报告等;而在深度学习与机器学习融合的模式中,深度学习的变为特征提取工具,其主要功能是从图片视频中提取不同深度的特征,为机器学习模型提供特征数据,进而完成疾病诊断或者预后预测的任务。

深度学习与机器学习的融合模式

根据深度学习提取的特征的不同,深度学习与机器学习的融合主要有以下三种模式:

  1. **简单的拼接:**深度学习模型首先对原始数据进行处理,提取特征,所提取的特征还是在重复人类的工作,比如,影像诊断的结果,然后将提取的特征输入到机器学习模型中进行后续的分析和预测。这种模式是简单地将深度学习和机器学习纳入到一个工作流中,保持了 目前深度学习和机器学习各自的模式。

  2. **调整的拼接:**深度学习模型提取的特征不再是简单地替代人类工作的结果,而是从机器的角度提取一些人类难以获得的信息。例如,可以利用深度学习模型计算病理切片中正在分裂的癌细胞的比例,但是这些特征还是人类设计出来的,认为对疾病诊断和预后预测有用的特征,然后,将这些特征输入到机器学习模型中,进行疾病诊断和预后预测。这种模式更大程度发挥深度学习模型的优势,有望提取更具特异性和判别性的特征。

  3. **深度学习与机器学习一体化:**深度学习模型提取的特征是人类难以理解的特征,也不是人类设计的, 但机器学习模型可以有效地利用这些特征进行学习和预测。这种模式代表了深度学习与机器学习融合的最高境界。

未来展望

将深度学习和机器学习放在一起比较,深度学习的优势在于产生数据,目前用深度学习来重复人类的工作,显然是大才小用,应该利用深度学习算法提取人类所认识不到的特征,而机器学习的优势在于使用数据,而目前局限于医学临床数据特异性和准确性的不足,机器学习算法无法准确地诊断疾病和预后预测, 两者的融合互补,将为人工智能在医学中的应用带来新的契机。

  • 一方面,深度学习模型将更加智能,能够从医学数据中提取更加丰富和精准的特征信息,有些可能是人类所无法理解的。
  • 另一方面,机器学习模型预测和诊断因为使用了更加具有疾病特异性的特征,对疾病的诊断和预后的预测将更加准确。

结论

深度学习与机器学习的融合是医学领域发展的重要趋势之一。通过将两者结合起来,我们可以从医学数据中提取更多有价值的信息,为疾病诊断、预后预测和治疗等提供更加有效的工具。相信在不久的将来,深度学习与机器学习将为医学带来更加革命性的变革。

相关推荐
得贤招聘官13 分钟前
AI 重塑招聘格局,传统招聘模式面临转型挑战
人工智能
九章云极AladdinEdu13 分钟前
量子机器学习框架设计:基于Cirq的变分量子算法实现
人工智能·量子机器学习·cirq框架·变分量子算法·量子卷积·混合神经网络·参数化量子电路
平和男人杨争争15 分钟前
SNN(TTFS)论文阅读——LC-TTFS
论文阅读·人工智能·神经网络·机器学习
我要学脑机21 分钟前
prompt[ai开发项目指示]
人工智能·prompt
天天进步201526 分钟前
Python全栈项目:结合Puppeteer和AI模型操作浏览器
开发语言·人工智能·python
星座52834 分钟前
AI+CMIP6数据分析与可视化、降尺度技术与气候变化的区域影响、极端气候分析
人工智能·ai·气候·水文·cmip6
mwq301231 小时前
MiniMind 模型架构创新技术详解
人工智能
骄傲的心别枯萎1 小时前
RV1126 NO.45:RV1126+OPENCV在视频中添加LOGO图像
人工智能·opencv·计算机视觉·音视频·rv1126
这儿有一堆花1 小时前
向工程神经网络对二进制加法的巧妙解决方案
人工智能·深度学习·神经网络
撬动未来的支点1 小时前
【AI】拆解神经网络“技术高墙”:一条基于“根本原理-补丁理论-AI部署”哲学的学习路径
人工智能·神经网络