【算法】子集

难度:中等

题目:

给你一个整数数组 nums ,数组中的元素 互不相同 。返回该数组所有可能的

子集(幂集)。

解集 不能 包含重复的子集。你可以按 任意顺序 返回解集。

示例 1:

输入:nums = [1,2,3]

输出:[[],[1],[2],[1,2],[3],[1,3],[2,3],[1,2,3]]

示例 2:

输入:nums = [0]

输出:[[],[0]]

提示:

1 <= nums.length <= 10

-10 <= nums[i] <= 10

nums 中的所有元素 互不相同

解题思路:

解决这道题目的关键在于理解并应用回溯算法来生成所有可能的子集。回溯算法是一种通过试错来寻找解的方法,当发现现有的路径不符合解的条件时,会回退到上一步,尝试其他可能的路径。对于子集问题,我们可以通过递归的方式,逐个决定每个元素是否加入当前子集中。

  1. 定义递归函数:设一个递归函数,接收当前子集、当前遍历到的数组下标作为参数。
  2. 递归终止条件:当遍历到数组末尾时,将当前子集添加到结果集中,然后返回。
  3. 单层递归逻辑
  • 将当前元素加入子集,然后递归调用下一个元素。
  • 回溯:从子集中移除当前元素(即不选择当前元素),然后递归调用下一个元素。
  • 这样,每个元素都有"选"或"不选"两种选择,从而生成所有可能的子集。

JavaScript 实现:

javascript 复制代码
function subsets(nums) {
    const result = []; // 存储所有子集的数组
    const backtrack = (start, path) => {
        // 将当前子集添加到结果集中
        result.push([...path]);
        // 遍历数组,从start开始,避免重复选择
        for (let i = start; i < nums.length; i++) {
            // 选择当前元素,加入路径
            path.push(nums[i]);
            // 递归调用,进入下一层决策树
            backtrack(i + 1, path);
            // 回溯,撤销选择,回到上一层决策树
            path.pop();
        }
    };
    // 调用回溯函数,初始时子集为空,从数组第一个元素开始考虑
    backtrack(0, []);
    return result;
}

// 示例
const nums = [1, 2, 3];
console.log(subsets(nums)); // 应输出所有子集

这段代码首先定义了一个subsets函数,它接收一个整数数组nums作为参数。在这个函数内部,定义了backtrack递归函数,用于生成所有子集。通过不断地选择和不选择当前元素,递归遍历整个决策树,最终将所有符合条件的子集收集到result数组中。最后,返回这个包含所有子集的数组。

相关推荐
minji...13 分钟前
C语言 函数递归
c语言·开发语言·算法
你好我是咯咯咯15 分钟前
代码随想录算法训练营Day36
算法
uhakadotcom23 分钟前
如何用AI打造高效招聘系统,HR效率提升100%!
后端·算法·面试
Felven1 小时前
A. Everybody Likes Good Arrays!
数据结构·算法
AI_RSER2 小时前
基于 Google Earth Engine 的南京江宁区土地利用分类(K-Means 聚类)
算法·机器学习·分类·kmeans·聚类·遥感·gee
Small踢倒coffee_氕氘氚3 小时前
是否应该禁止危险运动论文
经验分享·笔记·算法·灌灌灌灌
京东云开发者4 小时前
行稳、致远 | 技术驱动下的思考感悟
算法
Dignity_呱4 小时前
记一次手撕算法面试
前端·算法·面试
CodeJourney.4 小时前
深度探索:DeepSeek赋能WPS图表绘制
数据库·人工智能·算法·信息可视化·excel
陈奕昆4 小时前
6.1腾讯技术岗2025面试趋势前瞻:大模型、云原生与安全隐私新动向
算法·安全·云原生·面试·腾讯