【算法】子集

难度:中等

题目:

给你一个整数数组 nums ,数组中的元素 互不相同 。返回该数组所有可能的

子集(幂集)。

解集 不能 包含重复的子集。你可以按 任意顺序 返回解集。

示例 1:

输入:nums = [1,2,3]

输出:[[],[1],[2],[1,2],[3],[1,3],[2,3],[1,2,3]]

示例 2:

输入:nums = [0]

输出:[[],[0]]

提示:

1 <= nums.length <= 10

-10 <= nums[i] <= 10

nums 中的所有元素 互不相同

解题思路:

解决这道题目的关键在于理解并应用回溯算法来生成所有可能的子集。回溯算法是一种通过试错来寻找解的方法,当发现现有的路径不符合解的条件时,会回退到上一步,尝试其他可能的路径。对于子集问题,我们可以通过递归的方式,逐个决定每个元素是否加入当前子集中。

  1. 定义递归函数:设一个递归函数,接收当前子集、当前遍历到的数组下标作为参数。
  2. 递归终止条件:当遍历到数组末尾时,将当前子集添加到结果集中,然后返回。
  3. 单层递归逻辑
  • 将当前元素加入子集,然后递归调用下一个元素。
  • 回溯:从子集中移除当前元素(即不选择当前元素),然后递归调用下一个元素。
  • 这样,每个元素都有"选"或"不选"两种选择,从而生成所有可能的子集。

JavaScript 实现:

javascript 复制代码
function subsets(nums) {
    const result = []; // 存储所有子集的数组
    const backtrack = (start, path) => {
        // 将当前子集添加到结果集中
        result.push([...path]);
        // 遍历数组,从start开始,避免重复选择
        for (let i = start; i < nums.length; i++) {
            // 选择当前元素,加入路径
            path.push(nums[i]);
            // 递归调用,进入下一层决策树
            backtrack(i + 1, path);
            // 回溯,撤销选择,回到上一层决策树
            path.pop();
        }
    };
    // 调用回溯函数,初始时子集为空,从数组第一个元素开始考虑
    backtrack(0, []);
    return result;
}

// 示例
const nums = [1, 2, 3];
console.log(subsets(nums)); // 应输出所有子集

这段代码首先定义了一个subsets函数,它接收一个整数数组nums作为参数。在这个函数内部,定义了backtrack递归函数,用于生成所有子集。通过不断地选择和不选择当前元素,递归遍历整个决策树,最终将所有符合条件的子集收集到result数组中。最后,返回这个包含所有子集的数组。

相关推荐
C雨后彩虹3 小时前
任务最优调度
java·数据结构·算法·华为·面试
少林码僧5 小时前
2.31 机器学习神器项目实战:如何在真实项目中应用XGBoost等算法
人工智能·python·算法·机器学习·ai·数据挖掘
钱彬 (Qian Bin)5 小时前
项目实践15—全球证件智能识别系统(切换为Qwen3-VL-8B-Instruct图文多模态大模型)
人工智能·算法·机器学习·多模态·全球证件识别
Niuguangshuo6 小时前
EM算法详解:解密“鸡生蛋“的机器学习困局
算法·机器学习·概率论
a3158238066 小时前
Android 大图显示策略优化显示(一)
android·算法·图片加载·大图片
一条大祥脚6 小时前
26.1.9 轮廓线dp 状压最短路 构造
数据结构·c++·算法
鲨莎分不晴7 小时前
反向传播的数学本质:链式法则与动态规划的完美共舞
算法·动态规划
sonadorje7 小时前
逻辑回归中的条件概率
算法·机器学习·逻辑回归
cici158747 小时前
基于Pan-Tompkins算法的ECG信号HRV提取方案
算法
McGrady-1757 小时前
拓扑导航 vs 几何导航的具体实现位置
算法