day21-binary tree-part08-7.23

tasks for today:

  1. 699.修建二叉搜索树

  2. 108.将有序数组转化为二叉搜索树

  3. 538.把二叉搜索树转化为累加树


  1. 699.修建二叉搜索树

IN this practice, the feature of being binary search tree is very important, this can help trim the tree speedily.

when in "if root.val < low:" this condition, the left child tree can be totally trimed, because this is a binary search tree. All the left child value is less than the value of current root.

Note: Please compare the difference between this practice and the practice 450.

python 复制代码
# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def trimBST(self, root: Optional[TreeNode], low: int, high: int) -> Optional[TreeNode]:
        if root is None:
            return None
        
        if root.val < low:
            # when in this condition, the left child tree can be totally trimed, because this is a binary search tree
            return self.trimBST(root.right, low, high)
        elif root.val > high:
            # when in this condition, the right child tree can be totally trimed, because this is a binary search tree
            return self.trimBST(root.left, low, high)

        root.left = self.trimBST(root.left, low, high)
        root.right = self.trimBST(root.right, low, high)

        return root

one question: if I follow the logic of practice 450, it sometimes work well, but sometimes return fause solution, I mean: it is true that if a node's value is outside the range [low, high], the entire subtree rooted at that node needs to be trimmed, but I wonder, if I follow the logic of deleting a node to trim the tree, although it is more clumsy, but that should also work, the difference is I transaction the trimming a subtree into trimming nodes one-buy-one, why it sometimes not work, and sometimes work.

This problem might be created by the traverse order issue, because based on the example caser, some removed node is not correctly remove becasue some pitential trace back in the recursive algorithm. [2,1,3], low=3, high=4, [3] is expected but [3,1] is returned.

But this problem is not in delete node, maybe because the judging condition of root.val > key or root.val < key.

  1. 108.将有序数组转化为二叉搜索树

this practice's target is build a tree, so the key idea is to identify the val for construct current root node and the corresponding list feed into it for its following branches construction.

python 复制代码
# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def sortedArrayToBST(self, nums: List[int]) -> Optional[TreeNode]:
        
        if not nums:
            return

        new_node = TreeNode(nums[int((len(nums)-1)/2)])

        new_node.left = self.sortedArrayToBST(nums[:int((len(nums)-1)/2)])
        new_node.right = self.sortedArrayToBST(nums[int((len(nums)-1)/2)+1:])
        
        return new_node
  1. 538.把二叉搜索树转化为累加树

for a binary seach tree, the inorder search is a ascending list, to calculate the sum of values larger than cur node, the inorder shoudl be reversed, which makes a descending list, by adding the nums before the value of current node, the cur tree node's value can be given to cur root node for upate.

Noted: when there are variables in recursive, a self.XXX definition should be necessary.

python 复制代码
# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def convertBST(self, root: Optional[TreeNode]) -> Optional[TreeNode]:
        # when there is variable in the recursive, this from should be used
        self.pre = 0
        self.rev_inorder(root)

        return root

    def rev_inorder(self, node):
        if node is None:
            return
        
        self.rev_inorder(node.right)
        node.val += self.pre
        self.pre = node.val
        self.rev_inorder(node.left)
相关推荐
PAK向日葵5 小时前
【算法导论】PDD 0817笔试题题解
算法·面试
地平线开发者7 小时前
ReID/OSNet 算法模型量化转换实践
算法·自动驾驶
地平线开发者7 小时前
开发者说|EmbodiedGen:为具身智能打造可交互3D世界生成引擎
算法·自动驾驶
星星火柴9368 小时前
关于“双指针法“的总结
数据结构·c++·笔记·学习·算法
艾莉丝努力练剑9 小时前
【洛谷刷题】用C语言和C++做一些入门题,练习洛谷IDE模式:分支机构(一)
c语言·开发语言·数据结构·c++·学习·算法
C++、Java和Python的菜鸟11 小时前
第六章 统计初步
算法·机器学习·概率论
Cx330❀11 小时前
【数据结构初阶】--排序(五):计数排序,排序算法复杂度对比和稳定性分析
c语言·数据结构·经验分享·笔记·算法·排序算法
散11211 小时前
01数据结构-Prim算法
数据结构·算法·图论
起个昵称吧11 小时前
线程相关编程、线程间通信、互斥锁
linux·算法
myzzb12 小时前
基于uiautomation的自动化流程RPA开源开发演示
运维·python·学习·算法·自动化·rpa