day21-binary tree-part08-7.23

tasks for today:

  1. 699.修建二叉搜索树

  2. 108.将有序数组转化为二叉搜索树

  3. 538.把二叉搜索树转化为累加树


  1. 699.修建二叉搜索树

IN this practice, the feature of being binary search tree is very important, this can help trim the tree speedily.

when in "if root.val < low:" this condition, the left child tree can be totally trimed, because this is a binary search tree. All the left child value is less than the value of current root.

Note: Please compare the difference between this practice and the practice 450.

python 复制代码
# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def trimBST(self, root: Optional[TreeNode], low: int, high: int) -> Optional[TreeNode]:
        if root is None:
            return None
        
        if root.val < low:
            # when in this condition, the left child tree can be totally trimed, because this is a binary search tree
            return self.trimBST(root.right, low, high)
        elif root.val > high:
            # when in this condition, the right child tree can be totally trimed, because this is a binary search tree
            return self.trimBST(root.left, low, high)

        root.left = self.trimBST(root.left, low, high)
        root.right = self.trimBST(root.right, low, high)

        return root

one question: if I follow the logic of practice 450, it sometimes work well, but sometimes return fause solution, I mean: it is true that if a node's value is outside the range [low, high], the entire subtree rooted at that node needs to be trimmed, but I wonder, if I follow the logic of deleting a node to trim the tree, although it is more clumsy, but that should also work, the difference is I transaction the trimming a subtree into trimming nodes one-buy-one, why it sometimes not work, and sometimes work.

This problem might be created by the traverse order issue, because based on the example caser, some removed node is not correctly remove becasue some pitential trace back in the recursive algorithm. [2,1,3], low=3, high=4, [3] is expected but [3,1] is returned.

But this problem is not in delete node, maybe because the judging condition of root.val > key or root.val < key.

  1. 108.将有序数组转化为二叉搜索树

this practice's target is build a tree, so the key idea is to identify the val for construct current root node and the corresponding list feed into it for its following branches construction.

python 复制代码
# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def sortedArrayToBST(self, nums: List[int]) -> Optional[TreeNode]:
        
        if not nums:
            return

        new_node = TreeNode(nums[int((len(nums)-1)/2)])

        new_node.left = self.sortedArrayToBST(nums[:int((len(nums)-1)/2)])
        new_node.right = self.sortedArrayToBST(nums[int((len(nums)-1)/2)+1:])
        
        return new_node
  1. 538.把二叉搜索树转化为累加树

for a binary seach tree, the inorder search is a ascending list, to calculate the sum of values larger than cur node, the inorder shoudl be reversed, which makes a descending list, by adding the nums before the value of current node, the cur tree node's value can be given to cur root node for upate.

Noted: when there are variables in recursive, a self.XXX definition should be necessary.

python 复制代码
# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def convertBST(self, root: Optional[TreeNode]) -> Optional[TreeNode]:
        # when there is variable in the recursive, this from should be used
        self.pre = 0
        self.rev_inorder(root)

        return root

    def rev_inorder(self, node):
        if node is None:
            return
        
        self.rev_inorder(node.right)
        node.val += self.pre
        self.pre = node.val
        self.rev_inorder(node.left)
相关推荐
你怎么知道我是队长1 小时前
C语言---循环结构
c语言·开发语言·算法
艾醒1 小时前
大模型面试题剖析:RAG中的文本分割策略
人工智能·算法
纪元A梦3 小时前
贪心算法应用:K-Means++初始化详解
算法·贪心算法·kmeans
_不会dp不改名_3 小时前
leetcode_21 合并两个有序链表
算法·leetcode·链表
mark-puls3 小时前
C语言打印爱心
c语言·开发语言·算法
Python技术极客3 小时前
将 Python 应用打包成 exe 软件,仅需一行代码搞定!
算法
睡不醒的kun4 小时前
leetcode算法刷题的第三十四天
数据结构·c++·算法·leetcode·职场和发展·贪心算法·动态规划
吃着火锅x唱着歌4 小时前
LeetCode 978.最长湍流子数组
数据结构·算法·leetcode
我星期八休息4 小时前
深入理解跳表(Skip List):原理、实现与应用
开发语言·数据结构·人工智能·python·算法·list
lingran__4 小时前
速通ACM省铜第四天 赋源码(G-C-D, Unlucky!)
c++·算法