day21-binary tree-part08-7.23

tasks for today:

  1. 699.修建二叉搜索树

  2. 108.将有序数组转化为二叉搜索树

  3. 538.把二叉搜索树转化为累加树


  1. 699.修建二叉搜索树

IN this practice, the feature of being binary search tree is very important, this can help trim the tree speedily.

when in "if root.val < low:" this condition, the left child tree can be totally trimed, because this is a binary search tree. All the left child value is less than the value of current root.

Note: Please compare the difference between this practice and the practice 450.

python 复制代码
# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def trimBST(self, root: Optional[TreeNode], low: int, high: int) -> Optional[TreeNode]:
        if root is None:
            return None
        
        if root.val < low:
            # when in this condition, the left child tree can be totally trimed, because this is a binary search tree
            return self.trimBST(root.right, low, high)
        elif root.val > high:
            # when in this condition, the right child tree can be totally trimed, because this is a binary search tree
            return self.trimBST(root.left, low, high)

        root.left = self.trimBST(root.left, low, high)
        root.right = self.trimBST(root.right, low, high)

        return root

one question: if I follow the logic of practice 450, it sometimes work well, but sometimes return fause solution, I mean: it is true that if a node's value is outside the range [low, high], the entire subtree rooted at that node needs to be trimmed, but I wonder, if I follow the logic of deleting a node to trim the tree, although it is more clumsy, but that should also work, the difference is I transaction the trimming a subtree into trimming nodes one-buy-one, why it sometimes not work, and sometimes work.

This problem might be created by the traverse order issue, because based on the example caser, some removed node is not correctly remove becasue some pitential trace back in the recursive algorithm. [2,1,3], low=3, high=4, [3] is expected but [3,1] is returned.

But this problem is not in delete node, maybe because the judging condition of root.val > key or root.val < key.

  1. 108.将有序数组转化为二叉搜索树

this practice's target is build a tree, so the key idea is to identify the val for construct current root node and the corresponding list feed into it for its following branches construction.

python 复制代码
# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def sortedArrayToBST(self, nums: List[int]) -> Optional[TreeNode]:
        
        if not nums:
            return

        new_node = TreeNode(nums[int((len(nums)-1)/2)])

        new_node.left = self.sortedArrayToBST(nums[:int((len(nums)-1)/2)])
        new_node.right = self.sortedArrayToBST(nums[int((len(nums)-1)/2)+1:])
        
        return new_node
  1. 538.把二叉搜索树转化为累加树

for a binary seach tree, the inorder search is a ascending list, to calculate the sum of values larger than cur node, the inorder shoudl be reversed, which makes a descending list, by adding the nums before the value of current node, the cur tree node's value can be given to cur root node for upate.

Noted: when there are variables in recursive, a self.XXX definition should be necessary.

python 复制代码
# Definition for a binary tree node.
# class TreeNode:
#     def __init__(self, val=0, left=None, right=None):
#         self.val = val
#         self.left = left
#         self.right = right
class Solution:
    def convertBST(self, root: Optional[TreeNode]) -> Optional[TreeNode]:
        # when there is variable in the recursive, this from should be used
        self.pre = 0
        self.rev_inorder(root)

        return root

    def rev_inorder(self, node):
        if node is None:
            return
        
        self.rev_inorder(node.right)
        node.val += self.pre
        self.pre = node.val
        self.rev_inorder(node.left)
相关推荐
艾莉丝努力练剑33 分钟前
【LeetCode&数据结构】单链表的应用——反转链表问题、链表的中间节点问题详解
c语言·开发语言·数据结构·学习·算法·leetcode·链表
_殊途2 小时前
《Java HashMap底层原理全解析(源码+性能+面试)》
java·数据结构·算法
珊瑚里的鱼6 小时前
LeetCode 692题解 | 前K个高频单词
开发语言·c++·算法·leetcode·职场和发展·学习方法
秋说6 小时前
【PTA数据结构 | C语言版】顺序队列的3个操作
c语言·数据结构·算法
lifallen7 小时前
Kafka 时间轮深度解析:如何O(1)处理定时任务
java·数据结构·分布式·后端·算法·kafka
liupenglove7 小时前
自动驾驶数据仓库:时间片合并算法。
大数据·数据仓库·算法·elasticsearch·自动驾驶
python_tty8 小时前
排序算法(二):插入排序
算法·排序算法
然我8 小时前
面试官:如何判断元素是否出现过?我:三种哈希方法任你选
前端·javascript·算法
F_D_Z9 小时前
【EM算法】三硬币模型
算法·机器学习·概率论·em算法·极大似然估计
秋说9 小时前
【PTA数据结构 | C语言版】字符串插入操作(不限长)
c语言·数据结构·算法