通过json传递请求参数,如何处理动态参数和接口依赖

嗨,大家好,我是兰若姐姐,今天给大家讲一下如何通过json传递请求参数,如何处理动态参数和接口依赖

1. 使用配置文件和模板

test_data.json 中,你可以使用一些占位符或模板变量,然后在运行测试之前,通过代码生成具体的请求参数。比如:

test_data.json:

json 复制代码
{
    "Aapi": {
        "param1": "value1",
        "param2": "{Bapi_response_param}"
    }
}

在测试代码中,使用模板引擎(如 Jinja2)或字符串替换来生成最终的请求数据:

python 复制代码
import json
import requests

def get_data(template_path, context):
    with open(template_path, 'r') as file:
        template = file.read()
    return template.format(**context)

# Step 1: Call Bapi
response_b = requests.get('<http://example.com/bapi>')
b_data = response_b.json()

# Step 2: Prepare Aapi data using Bapi response
context = {
    "Bapi_response_param": b_data['desired_param']
}
a_data = get_data('test_data.json', context)

# Step 3: Call Aapi
response_a = requests.post('<http://example.com/aapi>', data=json.dumps(a_data))
print(response_a.json())

2. 写脚本处理参数依赖

在复杂情况下,可以直接在测试脚本中处理参数依赖:

python 复制代码
import requests

# Step 1: Call Bapi and get its response
response_b = requests.get('<http://example.com/bapi>')
b_data = response_b.json()
b_param = b_data['desired_param']

# Step 2: Use Bapi response data to prepare Aapi request
a_request_data = {
    "param1": "value1",
    "param2": b_param
}

# Step 3: Call Aapi
response_a = requests.post('<http://example.com/aapi>', json=a_request_data)
print(response_a.json())

3. 使用专用测试管理工具

有些测试框架或工具(例如 Postman, Karate, Robot Framework 等)提供了很好地处理依赖和动态数据的方法。这些工具通常允许你直接在测试步骤中引用变量和依赖的接口返回值。例如,在 Postman 中,你可以在一个请求中设置环境变量,然后在另一个请求中读取这些变量。

4. 封装为公共函数

将这些逻辑封装成公共函数,便于在多个测试用例间复用。例如:

python 复制代码
import requests

def call_bapi():
    response = requests.get('<http://example.com/bapi>')
    return response.json()

def call_aapi(b_param):
    data = {
        "param1": "value1",
        "param2": b_param
    }
    response = requests.post('<http://example.com/aapi>', json=data)
    return response.json()

# Usage
b_data = call_bapi()
a_response = call_aapi(b_data['desired_param'])
print(a_response)

5. 使用测试上下文或全局变量

如果测试大量依赖共享的状态,可以使用上下文或全局变量来存储并传递依赖数据。例如:

python 复制代码
class TestContext:
    def __init__(self):
        self.b_param = None

context = TestContext()

# Step 1: Get Bapi response and set context
response_b = requests.get('<http://example.com/bapi>')
context.b_param = response_b.json()['desired_param']

# Step 2: Use context in Aapi call
def call_aapi():
    data = {
        "param1": "value1",
        "param2": context.b_param
    }
    response = requests.post('<http://example.com/aapi>', json=data)
    return response.json()

# Run the test
a_response = call_aapi()
print(a_response)

总结

处理参数依赖和动态数据,需要结合实际情况选择合适的策略。通过使用模板、脚本处理、测试工具或者封装公共函数等方法,可以有效应对这些需求。希望这些方法对你有所帮助!

相关推荐
HsuHeinrich几秒前
利用径向柱图探索西班牙语学习数据
python·数据可视化
泽虞3 分钟前
《Qt应用开发》笔记p4
linux·开发语言·数据库·c++·笔记·qt·算法
独行soc8 分钟前
2025年渗透测试面试题总结-105(题目+回答)
网络·python·安全·web安全·adb·渗透测试·安全狮
泽虞10 分钟前
《Qt应用开发》笔记p5
linux·开发语言·c++·笔记·qt·算法
qq_4335545412 分钟前
C++ 完全背包时间优化、完全背包空间优化
开发语言·c++·动态规划
yanqiaofanhua23 分钟前
C语言自学--编译和链接
c语言·开发语言
史锦彪25 分钟前
用 PyTorch 实现 MNIST 手写数字识别:从入门到实践
人工智能·pytorch·python
打码的猿27 分钟前
在Qt中实现SwitchButton(开关按钮)
开发语言·qt·ui
友友马27 分钟前
『 QT 』QT窗口坐标体系详解
开发语言·qt
董建光d28 分钟前
PyTorch 实现 MNIST 手写数字识别完整流程(含数据处理、模型构建与训练可视化)
人工智能·pytorch·python