通过json传递请求参数,如何处理动态参数和接口依赖

嗨,大家好,我是兰若姐姐,今天给大家讲一下如何通过json传递请求参数,如何处理动态参数和接口依赖

1. 使用配置文件和模板

test_data.json 中,你可以使用一些占位符或模板变量,然后在运行测试之前,通过代码生成具体的请求参数。比如:

test_data.json:

json 复制代码
{
    "Aapi": {
        "param1": "value1",
        "param2": "{Bapi_response_param}"
    }
}

在测试代码中,使用模板引擎(如 Jinja2)或字符串替换来生成最终的请求数据:

python 复制代码
import json
import requests

def get_data(template_path, context):
    with open(template_path, 'r') as file:
        template = file.read()
    return template.format(**context)

# Step 1: Call Bapi
response_b = requests.get('<http://example.com/bapi>')
b_data = response_b.json()

# Step 2: Prepare Aapi data using Bapi response
context = {
    "Bapi_response_param": b_data['desired_param']
}
a_data = get_data('test_data.json', context)

# Step 3: Call Aapi
response_a = requests.post('<http://example.com/aapi>', data=json.dumps(a_data))
print(response_a.json())

2. 写脚本处理参数依赖

在复杂情况下,可以直接在测试脚本中处理参数依赖:

python 复制代码
import requests

# Step 1: Call Bapi and get its response
response_b = requests.get('<http://example.com/bapi>')
b_data = response_b.json()
b_param = b_data['desired_param']

# Step 2: Use Bapi response data to prepare Aapi request
a_request_data = {
    "param1": "value1",
    "param2": b_param
}

# Step 3: Call Aapi
response_a = requests.post('<http://example.com/aapi>', json=a_request_data)
print(response_a.json())

3. 使用专用测试管理工具

有些测试框架或工具(例如 Postman, Karate, Robot Framework 等)提供了很好地处理依赖和动态数据的方法。这些工具通常允许你直接在测试步骤中引用变量和依赖的接口返回值。例如,在 Postman 中,你可以在一个请求中设置环境变量,然后在另一个请求中读取这些变量。

4. 封装为公共函数

将这些逻辑封装成公共函数,便于在多个测试用例间复用。例如:

python 复制代码
import requests

def call_bapi():
    response = requests.get('<http://example.com/bapi>')
    return response.json()

def call_aapi(b_param):
    data = {
        "param1": "value1",
        "param2": b_param
    }
    response = requests.post('<http://example.com/aapi>', json=data)
    return response.json()

# Usage
b_data = call_bapi()
a_response = call_aapi(b_data['desired_param'])
print(a_response)

5. 使用测试上下文或全局变量

如果测试大量依赖共享的状态,可以使用上下文或全局变量来存储并传递依赖数据。例如:

python 复制代码
class TestContext:
    def __init__(self):
        self.b_param = None

context = TestContext()

# Step 1: Get Bapi response and set context
response_b = requests.get('<http://example.com/bapi>')
context.b_param = response_b.json()['desired_param']

# Step 2: Use context in Aapi call
def call_aapi():
    data = {
        "param1": "value1",
        "param2": context.b_param
    }
    response = requests.post('<http://example.com/aapi>', json=data)
    return response.json()

# Run the test
a_response = call_aapi()
print(a_response)

总结

处理参数依赖和动态数据,需要结合实际情况选择合适的策略。通过使用模板、脚本处理、测试工具或者封装公共函数等方法,可以有效应对这些需求。希望这些方法对你有所帮助!

相关推荐
xingshanchang7 分钟前
PyTorch 不支持旧GPU的异常状态与解决方案:CUDNN_STATUS_NOT_SUPPORTED_ARCH_MISMATCH
人工智能·pytorch·python
不想写bug呀2 小时前
多线程案例——单例模式
java·开发语言·单例模式
我不会写代码njdjnssj3 小时前
网络编程 TCP UDP
java·开发语言·jvm
费弗里3 小时前
Python全栈应用开发利器Dash 3.x新版本介绍(1)
python·dash
李少兄9 天前
解决OSS存储桶未创建导致的XML错误
xml·开发语言·python
阿蒙Amon9 天前
《C#图解教程 第5版》深度推荐
开发语言·c#
就叫飞六吧9 天前
基于keepalived、vip实现高可用nginx (centos)
python·nginx·centos
Vertira9 天前
PyTorch中的permute, transpose, view, reshape和flatten函数详解(已解决)
人工智能·pytorch·python
学Linux的语莫9 天前
python基础语法
开发语言·python
匿名的魔术师9 天前
实验问题记录:PyTorch Tensor 也会出现 a = b 赋值后,修改 a 会影响 b 的情况
人工智能·pytorch·python