Pytorch transforms 的研究

绝对路径与相对路径差别

transforms的使用

复制代码
from torchvision import transforms
from PIL import Image


img_path ="dataset/train/bees/16838648_415acd9e3f.jpg"
img = Image.open(img_path)
tensor_trans = transforms.ToTensor()
tensor_img =tensor_trans(img)
print(tensor_img)

python中 导包写法复习

复制代码
transforms.ToTensor() 的写法 transforms表示模块 ToTensor 表示函数 
复制代码
from torchvision import transforms
  • from: 指明我们要从某个包或模块中导入。
  • torchvision: 这是一个包(package),是 PyTorch 生态系统中专门用于计算机视觉任务的库。
  • import: 指明我们要导入什么。
  • transforms: 这是 torchvision 包中的一个模块,专门用于图像转换和数据增强

Transforms 的使用(二)

复制代码
from torchvision import transforms
from PIL import Image
from torch.utils.tensorboard import  SummaryWriter


img_path ="dataset/train/bees/16838648_415acd9e3f.jpg"
img = Image.open(img_path)

writer = SummaryWriter("logs")

tensor_trans = transforms.ToTensor()
tensor_img =tensor_trans(img)
writer.add_image("Tensor_img",tensor_img)
writer.close()

常见的transform

__call__的作用:

Totensor的使用 :

Normalize归一化的使用:

复制代码
print(tensor_img[0][0][0])
trans_norm = transforms.Normalize([0.5,0.5,0.5],[0.5,0.5,0.5])
img_norm = trans_norm(tensor_img)
print(img_norm[0][0][0])
writer.close()

代码分析

三维均值与标准差

  1. 彩色图像结构:

    大多数彩色图像使用RGB(红、绿、蓝)颜色模型。每个像素由这三个颜色通道的值组成。

  2. 通道独立处理:

    在图像处理和深度学习中,通常会对每个颜色通道独立进行标准化。这意味着每个通道都有自己的均值和标准差。

  3. 三维均值和标准差:

    • 均值:[mean_R, mean_G, mean_B]
    • 标准差:[std_R, std_G, std_B]

    其中,mean_R 和 std_R 分别是红色通道的均值和标准差,以此类推。

标准化公式

def forward(self, tensor: Tensor) -> Tensor: return F.normalize(tensor, self.mean, self.std, self.inplace)

这里的 F.normalize 是 PyTorch 的函数式接口中的一个函数,它封装了标准化的具体实现。虽然我们在这个类的定义中没有看到具体的计算过程,但是这个标准化公式是 F.normalize 函数内部实现的核心逻辑。

PyTorch 的文档和源码中会详细说明 F.normalize 函数的具体实现。标准化公式 output[channel] = (input[channel] - mean[channel]) / std[channel] 是在 F.normalize 函数内部执行的。

Resize的使用

复制代码
print(img.size)
trans_resize = transforms.Resize((512,512))
img_resize = trans_resize(img)
img_resize = tensor_trans(img_resize)
writer.add_image("Resize",img_resize,0)
print(img_resize)

Compose 的使用 :

Compose 将两个函数功能结合

复制代码
trans_resize_2 = transforms.Resize(512)
trans_compose =  transforms.Compose([trans_resize_2,tensor_trans])
img_resize2 = trans_compose(img)
writer.add_image("Resize2",img_resize2,1)
writer.close()

RandomCrop裁剪:

复制代码
trans_Randomcrop = transforms.RandomCrop(256)
trans_compose2 = transforms.Compose([trans_Randomcrop,tensor_trans])
for i in range(10):
    img_crop = trans_compose2(img)
    writer.add_image("Randomcrop",img_crop,i)
writer.close()

完整代码

复制代码
from torchvision import transforms
from PIL import Image
from torch.utils.tensorboard import  SummaryWriter


img_path ="dataset/train/bees/16838648_415acd9e3f.jpg"
img = Image.open(img_path)

writer = SummaryWriter("logs")

tensor_trans = transforms.ToTensor()
tensor_img =tensor_trans(img)
writer.add_image("Tensor_img",tensor_img)
#print(tensor_img)
#Normalize 归一化
print(tensor_img[0][0][0])
trans_norm = transforms.Normalize([0.5,0.5,0.5],[0.5,0.5,0.5])
img_norm = trans_norm(tensor_img)
print(img_norm[0][0][0])
writer.add_image("Normalize",img_norm)
writer.close()

##Resize
print(img.size)
trans_resize = transforms.Resize((512,512))
img_resize = trans_resize(img)
img_resize = tensor_trans(img_resize)
writer.add_image("Resize",img_resize,0)
print(img_resize)

#Compose
trans_resize_2 = transforms.Resize(64)
trans_compose =  transforms.Compose([trans_resize_2,tensor_trans])
img_resize2 = trans_compose(img)
writer.add_image("Resize2",img_resize2,1)
writer.close()
#RandomCrop
trans_Randomcrop = transforms.RandomCrop(256)
trans_compose2 = transforms.Compose([trans_Randomcrop,tensor_trans])
for i in range(10):
    img_crop = trans_compose2(img)
    writer.add_image("Randomcrop",img_crop,i)
writer.close()
相关推荐
豌豆花下猫5 分钟前
Python 潮流周刊#99:如何在生产环境中运行 Python?(摘要)
后端·python·ai
小杨4049 分钟前
python入门系列二十(peewee)
人工智能·python·pycharm
弧襪9 分钟前
FlaskRestfulAPI接口的初步认识
python·flaskrestfulapi
IT古董10 分钟前
【漫话机器学习系列】225.张量(Tensors)
人工智能
船长@Quant11 分钟前
文档构建:Sphinx全面使用指南 — 进阶篇
python·markdown·sphinx·文档构建
深圳市快瞳科技有限公司11 分钟前
当OCR遇上“幻觉”:如何让AI更靠谱地“看懂”文字?
人工智能·ai·ocr
每天都要写算法(努力版)12 分钟前
【神经网络与深度学习】训练集与验证集的功能解析与差异探究
人工智能·深度学习·神经网络
cloudy49114 分钟前
强化学习:历史基金净产值,学习最大化长期收益
python·强化学习
Bruce_Liuxiaowei25 分钟前
使用Python脚本在Mac上彻底清除Chrome浏览历史:开发实战与隐私保护指南
chrome·python·macos