神经网络的基本骨架 nn.module 与卷积操作

复制代码
import torch
from torch import nn


class Tudui(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, input):
        output = input + 1
        return output
    def __call__(self, input):
        return self.forward(input)

tudui = Tudui()
x = torch.tensor(1.0)
output = tudui(x)
print(output)

疑问:tudui = Tudui()

output=tudui(x) 为何写成output = Tudui(x)就会报错

PyTorch 的标准做法(先创建实例,再调用实例)

  • tudui = Tudui() 创建了 Tudui 类的一个实例。
  • 这个实例可以被多次使用,而不需要每次都创建新的对象。
  • output = Tudui(x) 时,Python 实际上在做两件事:
    a) 创建 Tudui 类的实例
    b) 尝试用 x 作为参数调用这个新创建的实例

卷积操作

复制代码
import torch
import torch.nn.functional as F

input = torch.tensor([[1, 2, 0, 3, 1],
                      [0, 1, 2, 3, 1],
                      [1, 2, 1, 0, 0],
                      [5, 2, 3, 1, 1],
                      [2, 1, 0, 1, 1]])

kernel = torch.tensor([[1, 2, 1],
                       [0, 1, 0],
                       [2, 1, 0]])

input = torch.reshape(input,shape=(1,1,5,5))
kernel = torch.reshape(kernel, (1, 1, 3, 3))

print(input.shape)
print(kernel.shape)

output = F.conv2d(input, kernel, stride=1)
print(output)

output2 = F.conv2d(input, kernel, stride=2)
print(output2)

output3 = F.conv2d(input, kernel, stride=1, padding=1)
print(output3)

padding = 1 就是 在原卷积层周围一圈补0

相关推荐
人工智能技术派2 分钟前
Qwen-Audio:一种新的大规模音频-语言模型
人工智能·语言模型·音视频
lpfasd1237 分钟前
从OpenAI发布会看AI未来:中国就业市场的重构与突围
人工智能·重构
春末的南方城市27 分钟前
清华&字节开源HuMo: 打造多模态可控的人物视频,输入文字、图片、音频,生成电影级的视频,Demo、代码、模型、数据全开源。
人工智能·深度学习·机器学习·计算机视觉·aigc
whltaoin40 分钟前
Java 后端与 AI 融合:技术路径、实战案例与未来趋势
java·开发语言·人工智能·编程思想·ai生态
中杯可乐多加冰44 分钟前
smardaten AI + 无代码开发实践:基于自然语言交互快速开发【苏超赛事管理系统】
人工智能
Hy行者勇哥44 分钟前
数据中台的数据源与数据处理流程
大数据·前端·人工智能·学习·个人开发
xiaohanbao091 小时前
Transformer架构与NLP词表示演进
python·深度学习·神经网络
岁月宁静1 小时前
AI 时代,每个程序员都该拥有个人提示词库:从效率工具到战略资产的蜕变
前端·人工智能·ai编程
双向331 小时前
Trae Solo+豆包Version1.6+Seedream4.0打造"AI识菜通"
人工智能
AutoMQ1 小时前
10.17 上海 Google Meetup:从数据出发,解锁 AI 助力增长的新边界
大数据·人工智能