【题解 && Kruskal重构树 && LCA】 星际导航

星际导航


分析:

这也是一个比较老的题目了

今天突然想学一下kruskal重构树,就做到了这个题。

首先我们要明白,为什么这道题的路径一定是在最小生成树里?

或许是我们惯有的经验:最小的最大或者最大的最小无非两种套路:

二分答案以及最小生成树。

仔细一想发现二分答案在这道题并不可行。

于是我们将矛头转向了最小生成树。

但是为什么呢?

首先我们明白,两个点之间的路径,其实是一个生成子图,或者说生成子树。

想要最大边最小,其实感性理解一下,就等价于让两个点连通的代价最小。

我们回想最小生成树的思路,这个时候有两个点x和y

如果x和y不连通,说明我们这个时候甚至找不到x和y的一条路径,也就无法求最大边的最小值。

这个时候如果我们在加入一条边v,使得x和y能够连通

那么ok,显然这条边就是我们想找的答案。

也就是x到y路径上的最大边的最小值。

为什么是最大边?

因为这是让x和y连通加入的最后一条边,前面的加边都比他小

为什么是最大的最小?

因为如果我们不要这条边,而选择后面的边,让x和y能够连通,后面的边显然都比他大。

所以又是最小。

这里的最大与最小其实是从两个维度看,理解不同罢了。

那么明白之后其实这道题就变成了Kruskal重构树的模板题。

Kruskal就是将最小生成树的边化为点

边权变成点权

这样子就得到了一颗二叉树

而且原图上的点都是叶子结点

原图上两点的边权就是他们的LCA

因为我们建树加边的时候是按照边权从小到大加边

所以满足越上面的点的边权越大。

于是两个点之间的最大边权就变成了重构树上的LCA的点权。

那么这题就结束了


cpp 复制代码
#include<bits/stdc++.h>
using namespace std;

#define int long long

const int N = 3e5+100;
int n,m;
struct E{
	int x,y,z;
}e[3*N];
int Fa[N][30];
int fa[N];
int cnt;
int v[N*2];
vector < int > a[N];
int d[N]; 
#define pb push_back

bool cmp(E x,E y){
	return x.z < y.z;
}

int getfa(int x){
	return x == fa[x]?x:fa[x] = getfa(fa[x]);
}

void Dfs(int x,int faa,int de){
	d[x] = de;
	Fa[x][0] = faa;
	for (int i = 0; i < a[x].size(); i++){
		int y = a[x][i]; if (y == faa) continue;
		Dfs(y,x,de+1);
	}
}

void Prefa(){
	for (int j = 1; j < 30; j++)
	  for (int i = 1; i <= cnt; i++)
	    if (Fa[i][j-1] == -1) Fa[i][j] = -1;
	    else Fa[i][j] = Fa[Fa[i][j-1]][j-1];
}

int Lca(int x,int y){
	if (d[x] < d[y]) swap(x,y);
	for (int dd = d[x]-d[y],i=0; dd; dd>>=1,i++)
	  if (dd&1) x = Fa[x][i];
	if (x == y) return x;
	for (int i = 29; i >= 0; i--)
	  if (Fa[x][i]!=Fa[y][i]) x = Fa[x][i] , y = Fa[y][i];
	return Fa[x][0];
}

signed main(){
	scanf("%lld %lld",&n,&m);
	for (int i = 1; i <= n; i++) v[i] = 0;
	cnt = n;
	for (int i = 1,x,y,z; i <= m; i++)
	  scanf("%lld %lld %lld",&x,&y,&z),e[i] = {x,y,z};
	sort(e+1,e+m+1,cmp);
	for (int i = 1; i < N; i++) fa[i] = i;
	for (int i = 1; i <= m; i++){
		int x = e[i].x , y = e[i].y , z = e[i].z;
		x = getfa(x) , y = getfa(y);
		if (x == y) continue;
		++cnt; v[cnt] = z;
		a[cnt].pb(x); a[cnt].pb(y);
		a[x].pb(cnt); a[y].pb(cnt);
		fa[x] = cnt; fa[y] = cnt;
	}
//	memset(Fa,-1,sizeof Fa);
	for (int i = cnt; i >= 1; i--)
	  if (!d[i]) Dfs(i,-1,1);
	Prefa();
	int q; cin>>q;
	while (q--){
		int x,y; 
		cin>>x>>y;
		int X = getfa(x) , Y = getfa(y);
		if (X!=Y){
			cout<<"impossible"<<endl;
			continue;
		}
		int L = Lca(x,y);
		printf("%lld\n",v[L]);
	}
	return 0;
}
相关推荐
是糖不是唐16 小时前
代码随想录算法训练营第五十三天|Day53 图论
c语言·数据结构·算法·图论
vir021 天前
好奇怪的游戏(BFS)
数据结构·c++·算法·游戏·深度优先·图论·宽度优先
一个不喜欢and不会代码的码农2 天前
李春葆《数据结构》——图相关代码
数据结构·算法·图论
是糖不是唐2 天前
代码随想录算法训练营第五十二天|Day52 图论
c语言·算法·深度优先·动态规划·图论
南宫生2 天前
力扣-Hot100-图论【算法学习day.38】
java·学习·算法·leetcode·链表·图论
张焚雪2 天前
关于图论建模的一份介绍
python·数学建模·图论
喵叔哟3 天前
重构代码之删除对参数的赋值
重构
fishjam3 天前
[开源重构]Search(Elasticsearch/OpenSearch) Sync Tool
elasticsearch·重构·开源
是糖不是唐3 天前
代码随想录算法训练营第五十一天|Day51 图论
c语言·数据结构·算法·深度优先·图论