R包:plot1cell单细胞可视化包

介绍

plot1cell是用于单细胞数据seurat数据对象的可视化包。

安装

R 复制代码
## You might need to install the dependencies below if they are not available in your R library.
bioc.packages <- c("biomaRt","GenomeInfoDb","EnsDb.Hsapiens.v86","GEOquery","simplifyEnrichment","ComplexHeatmap")
BiocManager::install(bioc.packages)
dev.packages <- c("chris-mcginnis-ucsf/DoubletFinder","Novartis/hdf5r","mojaveazure/loomR")
devtools::install_github(dev.packages)
## If you can't get the hdf5r package installed, please see the fix here:
## https://github.com/hhoeflin/hdf5r/issues/94

devtools::install_github("TheHumphreysLab/plot1cell")

library(plot1cell)

导入数据

R 复制代码
iri.integrated <- Install.example() 

使用

R 复制代码
###Prepare data for ploting
circ_data <- prepare_circlize_data(iri.integrated, scale = 0.8 )
set.seed(1234)
cluster_colors<-rand_color(length(levels(iri.integrated)))
group_colors<-rand_color(length(names(table(iri.integrated$Group))))
rep_colors<-rand_color(length(names(table(iri.integrated$orig.ident))))

###plot and save figures
# png(filename =  'circlize_plot.png', width = 6, height = 6,units = 'in', res = 300)
plot_circlize(circ_data,do.label = T, pt.size = 0.01, col.use = cluster_colors ,bg.color = 'white', kde2d.n = 200, repel = T, label.cex = 0.6)
add_track(circ_data, group = "Group", colors = group_colors, track_num = 2) ## can change it to one of the columns in the meta data of your seurat object
add_track(circ_data, group = "orig.ident",colors = rep_colors, track_num = 3) ## can change it to one of the columns in the meta data of your seurat object
#dev.off()
相关推荐
亚图跨际2 小时前
MATLAB和Python及R潜变量模型和降维
python·matlab·r语言·生物学·潜变量模型
写点什么啦3 小时前
使用R语言survminer获取生存分析高风险和低风险的最佳截断值cut-off
开发语言·python·r语言·生存分析·x-tile
枝上棉蛮12 小时前
GISBox VS ArcGIS:分别适用于大型和小型项目的两款GIS软件
arcgis·gis·数据可视化·数据处理·地理信息系统·gis工具箱·gisbox
让学习成为一种生活方式20 小时前
R包下载太慢安装中止的解决策略-R语言003
java·数据库·r语言
招风的黑耳1 天前
Axure大屏可视化模板:赋能各行各业的数据展示与管理
axure·数据可视化·大屏模板
FIT2CLOUD飞致云1 天前
仪表板展示|DataEase看中国:历年双十一电商销售数据分析
数据分析·开源·数据可视化·dataease·双十一
RestCloud2 天前
如何理解ETLCloud在iPaas中的关键角色
etl·数据可视化·数据集成·数据传输·ipaas·集成工具
有梦想的Frank博士2 天前
R语言*号标识显著性差异判断组间差异是否具有统计意义
开发语言·信息可视化·r语言
B站计算机毕业设计超人3 天前
计算机毕业设计Hadoop+PySpark深度学习游戏推荐系统 游戏可视化 游戏数据分析 游戏爬虫 Scrapy 机器学习 人工智能 大数据毕设
大数据·人工智能·爬虫·spark·课程设计·数据可视化·推荐算法
李恒-聆机智能专精数采3 天前
从零开始了解数采(十二)——汽车锂电池板自动装配线数据采集方案
大数据·数据挖掘·云计算·汽车·边缘计算·制造·数据可视化