【Transformer时序预测】基于Transformer-LSTM实现锂电池寿命预测附matlab代码

% 导入数据集

load('battery_data.mat'); % 假设锂电池数据保存在battery_data.mat文件中

% 数据预处理

% 这里省略了数据预处理的步骤,包括数据归一化、特征提取等

% 划分训练集和测试集

train_ratio = 0.8; % 训练集占总数据的比例

train_size = round(train_ratio * size(data, 1));

train_data = data(1:train_size, 😃;

test_data = data(train_size+1:end, 😃;

% 构建Transformer-LSTM模型

model = create_transformer_lstm_model(); % 自定义创建Transformer-LSTM模型的函数

% 训练模型

num_epochs = 100; % 训练轮数

batch_size = 32; % 批大小

train_model(model, train_data, num_epochs, batch_size);

% 进行锂电池寿命预测

predicted_life = predict_battery_life(model, test_data);

% 显示结果

plot_results(test_data, predicted_life);

% 自定义函数实现部分

function model = create_transformer_lstm_model()

% 创建并配置Transformer-LSTM模型

% 这里省略了模型的具体实现,包括输入层、Transformer编码器、LSTM解码器等

% 返回模型

model = ...; % 返回创建好的模型

end

function train_model(model, train_data, num_epochs, batch_size)

% 训练模型

% 这里省略了模型训练的具体步骤,包括数据分批、模型优化器的选择、损失函数的定义等

% 返回训练好的模型

trained_model = ...; % 返回训练好的模型

end

function predicted_life = predict_battery_life(model, test_data)

% 使用模型进行锂电池寿命预测

% 这里省略了锂电池寿命预测的具体步骤

% 返回预测结果

predicted_life = ...; % 返回预测结果

end

function plot_results(test_data, predicted_life)

% 绘制实际寿命和预测结果的图形

% 这里省略了绘图的具体步骤

% 显示图形

end

相关推荐
小lo想吃棒棒糖12 小时前
思路启发:基于预测编码的Transformer无反向传播训练:局部收敛性与全局最优性分析:
人工智能·深度学习·transformer
软件算法开发14 小时前
基于火烈鸟搜索算法的LSTM网络模型(FSA-LSTM)的一维时间序列预测matlab仿真
人工智能·rnn·matlab·lstm·一维时间序列预测·火烈鸟搜索算法·fsa-lstm
得一录1 天前
星图·微调试&全参数调试qwen3.1-B对比
人工智能·深度学习·机器学习·aigc·transformer
查无此人byebye1 天前
【超详细解读(GPU)】基于DiT的MNIST扩散模型(DDPM)完整实现
python·深度学习·nlp·transformer·多分类
青铜弟弟1 天前
LSTM与Transformer
人工智能·lstm·transformer
简简单单做算法1 天前
基于LSTM长短记忆网络模型的文本分类算法matlab仿真,对比GRU网络
matlab·分类·gru·lstm·文本分类
dracula0002 天前
通过get()函数获取Simulink模块的所有属性
matlab
盼小辉丶2 天前
Transformer实战——Transformer跨语言零样本学习
深度学习·transformer·零样本学习
dracula0002 天前
simulink建模助手系列-1【批量创建goto和from】
matlab
查无此人byebye2 天前
基于DiT+DDPM的MNIST数字生成:模型推理实战教程
人工智能·python·深度学习·nlp·transformer