【Transformer时序预测】基于Transformer-LSTM实现锂电池寿命预测附matlab代码

% 导入数据集

load('battery_data.mat'); % 假设锂电池数据保存在battery_data.mat文件中

% 数据预处理

% 这里省略了数据预处理的步骤,包括数据归一化、特征提取等

% 划分训练集和测试集

train_ratio = 0.8; % 训练集占总数据的比例

train_size = round(train_ratio * size(data, 1));

train_data = data(1:train_size, 😃;

test_data = data(train_size+1:end, 😃;

% 构建Transformer-LSTM模型

model = create_transformer_lstm_model(); % 自定义创建Transformer-LSTM模型的函数

% 训练模型

num_epochs = 100; % 训练轮数

batch_size = 32; % 批大小

train_model(model, train_data, num_epochs, batch_size);

% 进行锂电池寿命预测

predicted_life = predict_battery_life(model, test_data);

% 显示结果

plot_results(test_data, predicted_life);

% 自定义函数实现部分

function model = create_transformer_lstm_model()

% 创建并配置Transformer-LSTM模型

% 这里省略了模型的具体实现,包括输入层、Transformer编码器、LSTM解码器等

% 返回模型

model = ...; % 返回创建好的模型

end

function train_model(model, train_data, num_epochs, batch_size)

% 训练模型

% 这里省略了模型训练的具体步骤,包括数据分批、模型优化器的选择、损失函数的定义等

% 返回训练好的模型

trained_model = ...; % 返回训练好的模型

end

function predicted_life = predict_battery_life(model, test_data)

% 使用模型进行锂电池寿命预测

% 这里省略了锂电池寿命预测的具体步骤

% 返回预测结果

predicted_life = ...; % 返回预测结果

end

function plot_results(test_data, predicted_life)

% 绘制实际寿命和预测结果的图形

% 这里省略了绘图的具体步骤

% 显示图形

end

相关推荐
高洁015 小时前
具身智能-普通LLM智能体与具身智能:从语言理解到自主行动 (2)
深度学习·算法·aigc·transformer·知识图谱
人工智能技术咨询.8 小时前
具身智能-普通LLM智能体与具身智能:从语言理解到自主行动
人工智能·transformer
AI模块工坊18 小时前
CVPR 即插即用 | 当RetNet遇见ViT:一场来自曼哈顿的注意力革命,中科院刷新SOTA性能榜!
人工智能·深度学习·计算机视觉·transformer
wuk99819 小时前
基于Matlab的彩色图像特征提取实现
人工智能·计算机视觉·matlab
yong999019 小时前
基于互信息的Matlab多模态医学图像配准实现
开发语言·matlab
Evand J20 小时前
【TCN与LSTM例程】TCN(时间卷积网络)与LSTM(长短期记忆)训练单输入单输出,用于拟合一段信号,便于降噪。MATLAB
网络·人工智能·matlab·lstm
vvoennvv21 小时前
【Python TensorFlow】 BiTCN-LSTM双向时间序列卷积长短期记忆神经网络时序预测算法(附代码)
python·神经网络·tensorflow·lstm·tcn
小女孩真可爱1 天前
大模型学习记录(二)------Transform文本分类
语言模型·分类·transformer
bubiyoushang8881 天前
基于MATLAB的自然图像梯度分布重尾特性验证方案
开发语言·matlab
盼小辉丶1 天前
视觉Transformer实战 | Token-to-Token Vision Transformer(T2T-ViT)详解与实现
pytorch·深度学习·计算机视觉·transformer