【Transformer时序预测】基于Transformer-LSTM实现锂电池寿命预测附matlab代码

% 导入数据集

load('battery_data.mat'); % 假设锂电池数据保存在battery_data.mat文件中

% 数据预处理

% 这里省略了数据预处理的步骤,包括数据归一化、特征提取等

% 划分训练集和测试集

train_ratio = 0.8; % 训练集占总数据的比例

train_size = round(train_ratio * size(data, 1));

train_data = data(1:train_size, 😃;

test_data = data(train_size+1:end, 😃;

% 构建Transformer-LSTM模型

model = create_transformer_lstm_model(); % 自定义创建Transformer-LSTM模型的函数

% 训练模型

num_epochs = 100; % 训练轮数

batch_size = 32; % 批大小

train_model(model, train_data, num_epochs, batch_size);

% 进行锂电池寿命预测

predicted_life = predict_battery_life(model, test_data);

% 显示结果

plot_results(test_data, predicted_life);

% 自定义函数实现部分

function model = create_transformer_lstm_model()

% 创建并配置Transformer-LSTM模型

% 这里省略了模型的具体实现,包括输入层、Transformer编码器、LSTM解码器等

% 返回模型

model = ...; % 返回创建好的模型

end

function train_model(model, train_data, num_epochs, batch_size)

% 训练模型

% 这里省略了模型训练的具体步骤,包括数据分批、模型优化器的选择、损失函数的定义等

% 返回训练好的模型

trained_model = ...; % 返回训练好的模型

end

function predicted_life = predict_battery_life(model, test_data)

% 使用模型进行锂电池寿命预测

% 这里省略了锂电池寿命预测的具体步骤

% 返回预测结果

predicted_life = ...; % 返回预测结果

end

function plot_results(test_data, predicted_life)

% 绘制实际寿命和预测结果的图形

% 这里省略了绘图的具体步骤

% 显示图形

end

相关推荐
强哥之神8 小时前
浅谈目前主流的LLM软件技术栈:Kubernetes + Ray + PyTorch + vLLM 的协同架构
人工智能·语言模型·自然语言处理·transformer·openai·ray
fsnine15 小时前
从RNN到LSTM:深入理解循环神经网络与长短期记忆网络
网络·rnn·lstm
chxin1401616 小时前
Transformer注意力机制——动手学深度学习10
pytorch·rnn·深度学习·transformer
jie*16 小时前
小杰深度学习(fourteen)——视觉-经典神经网络——ResNet
人工智能·python·深度学习·神经网络·机器学习·tensorflow·lstm
霖0017 小时前
ZYNQ裸机开发指南笔记
人工智能·经验分享·笔记·matlab·fpga开发·信号处理
ghie909019 小时前
基于MATLAB的遗传算法优化支持向量机实现
算法·支持向量机·matlab
PKNLP21 小时前
Transformer模型
人工智能·深度学习·transformer
渡我白衣21 小时前
深度学习进阶(一)——从 LeNet 到 Transformer:卷积的荣光与注意力的崛起
人工智能·深度学习·transformer
许泽宇的技术分享21 小时前
百刀打造ChatGPT:nanochat极简LLM全栈实现深度解析
chatgpt·transformer·大语言模型·nanochat
高洁011 天前
大模型-去噪扩散概率模型(DDPM)采样算法详解
python·深度学习·神经网络·transformer·知识图谱