【Transformer时序预测】基于Transformer-LSTM实现锂电池寿命预测附matlab代码

% 导入数据集

load('battery_data.mat'); % 假设锂电池数据保存在battery_data.mat文件中

% 数据预处理

% 这里省略了数据预处理的步骤,包括数据归一化、特征提取等

% 划分训练集和测试集

train_ratio = 0.8; % 训练集占总数据的比例

train_size = round(train_ratio * size(data, 1));

train_data = data(1:train_size, 😃;

test_data = data(train_size+1:end, 😃;

% 构建Transformer-LSTM模型

model = create_transformer_lstm_model(); % 自定义创建Transformer-LSTM模型的函数

% 训练模型

num_epochs = 100; % 训练轮数

batch_size = 32; % 批大小

train_model(model, train_data, num_epochs, batch_size);

% 进行锂电池寿命预测

predicted_life = predict_battery_life(model, test_data);

% 显示结果

plot_results(test_data, predicted_life);

% 自定义函数实现部分

function model = create_transformer_lstm_model()

% 创建并配置Transformer-LSTM模型

% 这里省略了模型的具体实现,包括输入层、Transformer编码器、LSTM解码器等

% 返回模型

model = ...; % 返回创建好的模型

end

function train_model(model, train_data, num_epochs, batch_size)

% 训练模型

% 这里省略了模型训练的具体步骤,包括数据分批、模型优化器的选择、损失函数的定义等

% 返回训练好的模型

trained_model = ...; % 返回训练好的模型

end

function predicted_life = predict_battery_life(model, test_data)

% 使用模型进行锂电池寿命预测

% 这里省略了锂电池寿命预测的具体步骤

% 返回预测结果

predicted_life = ...; % 返回预测结果

end

function plot_results(test_data, predicted_life)

% 绘制实际寿命和预测结果的图形

% 这里省略了绘图的具体步骤

% 显示图形

end

相关推荐
静心问道36 分钟前
TrOCR: 基于Transformer的光学字符识别方法,使用预训练模型
人工智能·深度学习·transformer·多模态
RickyWasYoung1 天前
【代码】Matlab鸟瞰图函数
开发语言·matlab
墨尘游子2 天前
一文读懂循环神经网络—从零实现长短期记忆网络(LSTM)
人工智能·python·深度学习·神经网络·算法·机器学习·lstm
王小王-1232 天前
基于深度学习的LSTM、GRU对大数据交通流量分析与预测的研究
深度学习·gru·lstm·交通流量预测系统·客流量预测系统·流量预测·拥堵预测
图像僧2 天前
多相机depth-rgb图组完整性分拣器_MATLAB实现
matlab
程高兴2 天前
基于Matlab的四旋翼无人机动力学PID控制仿真
开发语言·matlab·无人机
机器学习之心2 天前
三种深度学习模型(LSTM、CNN-LSTM、贝叶斯优化的CNN-LSTM/BO-CNN-LSTM)对北半球光伏数据进行时间序列预测
深度学习·cnn·lstm·cnn-lstm·贝叶斯优化的cnn-lstm
CV练习生Zzz3 天前
MATLAB知识点总结
开发语言·matlab
昵称是6硬币3 天前
(RT-DETR)DETRs Beat YOLOs on Real-time Object Detection论文精读(逐段解析)
图像处理·人工智能·深度学习·目标检测·计算机视觉·transformer
bcbobo21cn3 天前
初步了解Matlab神经网络的激活函数
神经网络·matlab·激活函数·tansig