R语言优雅的进行广义可加模型泊松回归分析

泊松回归(Poisson regression)是以结局变量为计数结果时的一种回归分析。泊松回归在我们的生活中应用非常广泛,例如:1分钟内过马路人数,1天内火车站的旅客流动数,1天内的银行取钱人数,一周内的销售经营数据等等都可以使用泊松回归进行分析。

既往已经有文章《R语言进行泊松回归》初步的介绍了泊松回归,本期介绍下如何使用tidygam包来优雅的进行泊松回归,tidygam包主要是通过mgcv包来进行分析,通过对tidygam包对mgcv包的数据转换后,上手难度大大降低,可以轻松优雅的进行泊松回归分析。

咱们先导入R包和数据,数据使用的是tidygam自带的gest数据

r 复制代码
library(tidygam)
library(mgcv)
library(dplyr)
library(ggplot2)
data("gest")
theme_set(theme_light())

这个数据是一个10、11和12个月婴儿的手势数量的数据,这个数据表包含了来自孟加拉、中国和英国背景的60名婴儿所做的三种手势的计数。我解释一下变量名:dyad是ID标识的意思,background:表明来自哪个国家,months:月份,只有10,11,12共3个月,gesture手势的类型,count:手势的计数,这个是 结局变量

先生成gam模型

r 复制代码
gs <- gam(
  count ~ s(months, k = 3),
  data = gest,
  family = poisson
)

这个模型gam是mgcv包生成的,解析模型,表明月数和手势计数是相关的

生成预测值

r 复制代码
gs_pred <- predict_gam(gs)

绘图,一定要用series标明绘制哪个变量

r 复制代码
gs_pred %>%
  plot(series = "months")

R包介绍,这个时候生成的Y周是count的对数值,因此我们还需要转换一下

r 复制代码
predict_gam(gs, tran_fun = exp) %>%
  plot(series = "months")

如果咱们想了解不同国家的分类,可以再gam函数中设定

r 复制代码
gs_by <- gam(
  count ~ s(months, by = background, k = 3),
  data = gest,
  family = poisson
)

解析模型,表明不同的国家婴儿,手势计数都是和月份相关

r 复制代码
summary(gs_by)

接下来咱们可以绘制分类图形,需要再comparison处指明根据哪个变量分类

r 复制代码
gs_by %>%
  predict_gam(length_out = 20, series = "months", tran_fun = exp) %>%
  plot(comparison = "background")

R包指出,虽然使用plot函数绘图,但是它的本质上是一个ggplot2绘制的图片,所以咱们可以使用ggplot的方法修改它

r 复制代码
gs_by %>%
  predict_gam(length_out = 20, series = "months", tran_fun = exp) %>%
  plot(comparison = "background") +
  scale_color_brewer(type = "qual") + scale_fill_brewer(type = "qual")

咱们如果考虑有2个非连续的变量,可以再模型里面定义

r 复制代码
gs_by_2 <- gam(
  count ~ s(months, by = background, k = 3) +
    s(months, by = gesture, k = 3),
  data = gest,
  family = poisson
)

解析模型,这里虽然有变量交叉,但是这种做法并不是交互效应,应该理解为亚组更加准确

r 复制代码
summary(gs_by_2)

绘图

r 复制代码
gs_by_2 %>%
  predict_gam(length_out = 20, series = "months", tran_fun = exp) %>%
  plot(comparison = "gesture") +
  scale_color_brewer(type = "qual") + scale_fill_brewer(type = "qual") +
  facet_grid(~ background)

如果咱们想了解background和gesture的交互关系,要先生成一个交互变量

r 复制代码
gest <- gest %>%
  mutate(back_gest = interaction(background, gesture))

然后咱们使用这个交互变量进行模型分类

r 复制代码
gs_i <- gam(
  count ~ s(months, by = back_gest, k = 3),
  data = gest,
  family = poisson
)
summary(gs_i)

绘图,

r 复制代码
predict_gam(
  gs_i, tran_fun = exp,
  separate = list(back_gest = c("background", "gesture"))
) %>%
  plot(series = "months", comparison = "gesture") +
  facet_grid(~ background)

这样一个亚组交互图形就生成好啦。

相关推荐
我有与与症1 小时前
从页面加载过程看 Kuikly 的多线程架构
kotlin
说私域4 小时前
日本零售精髓赋能下 链动2+1模式驱动新零售本质回归与发展格局研究
人工智能·小程序·数据挖掘·回归·流量运营·零售·私域运营
Faker66363aaa4 小时前
药品包装识别与分类系统:基于Faster R-CNN R50 FPN的Groie数据集训练_1
分类·r语言·cnn
JMchen1235 小时前
Android UDP编程:实现高效实时通信的全面指南
android·经验分享·网络协议·udp·kotlin
AI资源库5 小时前
nvidiapersonaplex-7b-v1模型深入解析
人工智能·语言模型·回归
JMchen1236 小时前
Android网络安全实战:从HTTPS到双向认证
android·经验分享·网络协议·安全·web安全·https·kotlin
JMchen12320 小时前
Android后台服务与网络保活:WorkManager的实战应用
android·java·网络·kotlin·php·android-studio
儿歌八万首1 天前
硬核春节:用 Compose 打造“赛博鞭炮”
android·kotlin·compose·春节
消失的旧时光-19431 天前
从 Kotlin 到 Dart:为什么 sealed 是处理「多种返回结果」的最佳方式?
android·开发语言·flutter·架构·kotlin·sealed
有位神秘人1 天前
kotlin与Java中的单例模式总结
java·单例模式·kotlin