3.3-LSTM的改进

文章目录

1改进点

1.1多层化

  1. 加深神经网络的层数往往能够学习更复杂的模式;因此这里增加了LSTM层的数量;如下图所示:

    1. 第一个 LSTM 层的隐藏状态是第二个LSTM层的输入;
    2. 关于叠加几个层,这是超参数调优的范畴了;需要根据要解决的问题的复杂程度、能给到的训练数据的规模来确定;
    3. 在 PTB 数据集上学习语言模型的情况下,当 LSTM 的层数为 2 ~ 4 时,可以获得比较好的结果

1.2 dropout

详细可以再看一下:https://1drv.ms/b/s!AvF6gzVaw0cNjqYc_hrdnGUeqyCXWg?e=hn5AoB;

1.2.1具体概念

  1. 通过加深层,可以创建表现力更强的模型,但是这样的模型往往会发生过拟合;过拟合即模型泛化能力差;

  2. ++RNN 比常规的前馈神经网络更容易发生过拟合++,因此 RNN 的过拟合对策非常重要;

  3. 如何缓解过拟合:

    1. 优先考虑:一是增加训练数据;二是降低模型的复杂度
    2. 还有正则化的方法;即给予惩罚;
    3. dropout这种,在训练时随机忽略层的一部分(比如 50%)神经元,也可以被视为一种正则化;
  4. dropout的具体结构

    1. Dropout 随机选择一部分神经元,然后忽略它们,停止向前传递信号;具体而言,训练时,每传递一次数据,就会随机选择要删除的神经元 。 然后,测试时,虽然会传递所有的神经元信号,但是对于各个神经元的输出, 要乘上训练时的删除比例后再输出

    2. 下图是概念图:

  5. dropout的代码如下(直接看了书上的结果,没有自己做一遍):

    1. forward函数中,是一个判断;训练时需要按照设置的比例忽略一些神经元,忽略的方法就是将x中某些元素值设置为0;测试时传递所有的神经元信号,但是都要乘上删除比例;
    2. 正向传播时没有传递信号的神经元,反向传播时信号就停在那里 ;换句话说,这些神经元dout*self.mask的值为0,即这些神经元的梯度不会影响后续的反向传播;
  6. 下图是书上的一个实验:

    1. 加了dropout之后,训练集和测试集上的表现更相近,说明缓解了过拟合;

1.2.2应该插入到LSTM模型的哪里

  1. 不能在水平方向上插入

    1. 水平方向上是这样插入的:

    2. 由于每次dropout都有神经元不进行前向计算,这存在信息丢失;

    3. 并且我们会设置stateful参数为true,即下一次Time LSTM前向计算时会继承上一次Time LSTM的最后一个LSTM层的隐藏状态;这样一来,这个信息丢失会随着时间的延续而不断累积;

    4. 信息丢失多了,那就是说有用的信息少了,噪声多了;

    5. 所以不建议在水平方向上加入dropout

  2. 因此可以在垂直方向上插入;如下图所示;这样水平方向上不存在信息丢失,因此至少输入的数据的信息都学到了;

  3. 但是也有方法来实现水平方向上的dropout(正则化)

    1. "变分 Dropout"(variational dropout):同一层的 Dropout 使用相同的 mask。这里所说的 mask 是指决定是否传递数据的随机布尔值;这样每一层信息丢失的都是那一部分;那么在其它层的dropout信息丢失的又都是另外一部分,这样互相找补找补就会好很多;

1.3权重共享

  1. 通过前面了解LSTM的结构,我们可以感受到,LSTM的参数量是RNN的好几倍;加上多层化的话,参数量更多;因此可以适当减少一下参数量 ,在能够保证模型效果的前提下;而且参数量减少了还能抑制过拟合;见论文

  2. 权重共享前提是得两个层的权重确实是一样的;像本书中这里说的权重共享,是将Embedding 层和 Softmax 前的 Affine 层共享权重;这两个部分用的权重维度是一样的;

    1. 具体而言,Embedding层的权重维度为(V,H);Affine 层的权重维度为(H,V)
    2. 因此只需将 Embedding 层权重的转置设置为 Affine 层的权重即可;

2改进之后的LSTMLM的代码实现

本书学习过程中的代码已全部搬运至gitee:https://gitee.com/gaoyan1518/basic-nlp;

代码位于:LSTM_model/better_LSTMLM.py

  1. 首先需要构建一下Time Dropout层;由于Dropout层只是单纯的给某些神经元遮蔽掉,多个时刻也是一样的处理,时刻与时刻之间的Dropout层是独立的;所以不需要像Time LSTM层那样在forward里面循环T次;

  2. 另外这里在实现的时候,是在训练阶段就进行了缩放,所以测试阶段直接就返回了x,代码如下;如果训练阶段没有进行缩放,则测试阶段就要对x乘上删除比例;1.0 - self.dropout_ratio是删除比例;【可以看这个博客

    py 复制代码
    class TimeDropout:
        def __init__(self, dropout_ratio=0.5):
            self.params, self.grads = [], []
            self.dropout_ratio = dropout_ratio
            self.mask = None
            self.train_flg = True
    
        def forward(self, xs):
            if self.train_flg:
                flg = cupy.random.rand(*xs.shape) > self.dropout_ratio
                scale = 1 / (1.0 - self.dropout_ratio) # 删除比例的倒数;删除的越多,剩余神经元的权重就越小
                self.mask = flg.astype(cupy.float32) * scale
    
                return xs * self.mask
            else:
                return xs
    
        def backward(self, dout):
            return dout * self.mask

2.1初始化

  1. 与之前的LSTMLM相比,这里就是多层化了、权重共享了、加入了dropout,其他的都一样;代码如下:

    python 复制代码
    class BetterRnnlm:
        def __init__(self, vocab_size=10000, wordvec_size=650, hidden_size=650, dropout_ratio=0.5):
            V, D, H = vocab_size, wordvec_size, hidden_size
            rn = np.random.randn
    
            embed_W = (rn(V, D) / 100).astype('f') # 与affine_w权重共享
            lstm_Wx1 = (rn(D, 4 * H) / np.sqrt(D)).astype('f') # 同样是一个整合之后的权重矩阵
            lstm_Wh1 = (rn(H, 4 * H) / np.sqrt(H)).astype('f')
            lstm_b1 = np.zeros(4 * H).astype('f')
            lstm_Wx2 = (rn(H, 4 * H) / np.sqrt(H)).astype('f')
            lstm_Wh2 = (rn(H, 4 * H) / np.sqrt(H)).astype('f')
            lstm_b2 = np.zeros(4 * H).astype('f')
            affine_b = np.zeros(V).astype('f')
    
            if GPU:
                embed_W = to_gpu(embed_W)
                lstm_Wx1 = to_gpu(lstm_Wx1)
                lstm_Wx2 = to_gpu(lstm_Wx2)
                lstm_Wh1 = to_gpu(lstm_Wh1)
                lstm_Wh2 = to_gpu(lstm_Wh2)
                lstm_b1 = to_gpu(lstm_b1)
                lstm_b2 = to_gpu(lstm_b2)
                affine_b = to_gpu(affine_b)
    
            self.layers = [
                TimeEmbedding(embed_W),
                TimeDropout(dropout_ratio),
                TimeLSTM(lstm_Wx1, lstm_Wh1, lstm_b1, stateful=True),
                TimeDropout(dropout_ratio),
                TimeLSTM(lstm_Wx2, lstm_Wh2, lstm_b2, stateful=True),
                TimeDropout(dropout_ratio),
                TimeAffine(embed_W.T, affine_b)  # weight tying!!
            ]
            self.loss_layer = TimeSoftmaxWithLoss()
            self.lstm_layers = [self.layers[2], self.layers[4]]
            self.drop_layers = [self.layers[1], self.layers[3], self.layers[5]]
    
            self.params, self.grads = [], []
            for layer in self.layers:
                self.params += layer.params
                self.grads += layer.grads

2.2前向计算

  1. 和之前一样,只不过这里需要先把dropout层设置为训练模式;如下图所示:

  2. 代码如下:

    python 复制代码
        def predict(self, xs, train_flg=False):
            '''
            @param xs: (N, T);输入的数据;
            @param train_flg: 是否是训练阶段的标记;用于dropout层的计算方式选择;
            @return xs: (N,T,V);Time Affine层之后的输出,即得分;'''
            for layer in self.drop_layers:
                # 先将所有的dropout层都设置为训练模式
                layer.train_flg = train_flg
    
            for layer in self.layers:
                xs = layer.forward(xs)
            return xs
    
        def forward(self, xs, ts, train_flg=True):
            '''
            @param xs: (N, T);输入的数据;
            @param ts: (N, T);监督数据;(N,T)时不是独热编码形式;
            @param train_flg: 是否是训练阶段的标记;用于dropout层的计算方式选择;
            @return loss: 损失值;'''
            score = self.predict(xs, train_flg)
            loss = self.loss_layer.forward(score, ts)
            return loss

2.3反向传播

  1. 反向传播和LSTMLM一样;另外,重设状态的函数稍有区别;再就是还有加载和保存参数的函数;如下图所示;

3相应的学习代码的实现

代码位于:LSTM_model/train_better_LSTMLM.py

  1. 由于这里将Embedding层和Affine层进行权重共享,因此在RNN_model/rnnTrainer.pyRnnlmTrainer.fit函数中,需要在梯度计算之后整合相同的权重对应的梯度值;即加入了remove_duplicate函数;如下图所示;

  2. 在学习过程中,每学习一个epoch,就在验证集上计算困惑度,如果困惑度变大了,则降低学习率,让模型训练更加稳定;

    1. 所以这里还需要读取验证集数据;与读取测试集数据一样;同样考虑了GPU的运行;

    2. 我们只需要在调用RnnlmTrainer.fit函数时指定max_epoch=1就可以复用RnnlmTrainer.fit函数的同时,满足此处每个epoch都进行验证的需求;

    3. 验证前通过model.reset_state()重置模型的状态(即Time LSTM层的初始h和c置为空);验证完开启下一轮训练前也重置一次;

      1. 回忆改进前LSTMLM的学习过程,我们好像没有在每个epoch结束后重置状态;++这里我自己试了一下在每个epoch开始前都重置初始的状态,结果和没有重置差不多++;
      2. 那这里重置的意义在于,因为要看在验证集上的表现,因此来自训练集训练好的状态当然不能要,否则就收到训练集影响了;
    4. 通过调用ppl = eval_perplexity(model, corpus_val)在测试集上走一遍前向计算的流程,获取模型在验证集上的困惑度值;读取数据的地方与RnnlmTrainer.fit函数中的有所不同,但本质上是一样的;eval_perplexity函数代码如下:

      python 复制代码
      def eval_perplexity(model, corpus, batch_size=10, time_size=35):
          print('evaluating perplexity ...')
          corpus_size = len(corpus)
          total_loss, loss_cnt = 0, 0
          max_iters = (corpus_size - 1) // (batch_size * time_size)
          jump = (corpus_size - 1) // batch_size
      
          for iters in range(max_iters):
              xs = np.zeros((batch_size, time_size), dtype=np.int32)
              ts = np.zeros((batch_size, time_size), dtype=np.int32)
              time_offset = iters * time_size # 每过一个iters就跳过每个句子的time_size个单词
              offsets = [time_offset + (i * jump) for i in range(batch_size)]
              for t in range(time_size):
                  for i, offset in enumerate(offsets):
                      # 这里xs和ts是都从corpus中获取;
                      xs[i, t] = corpus[(offset + t) % corpus_size]
                      ts[i, t] = corpus[(offset + t + 1) % corpus_size]
      
              try:
                  xs = to_gpu(xs)
                  ts = to_gpu(ts)
                  loss = model.forward(xs, ts, train_flg=False) # 将dropout层设置为测试模式
              except TypeError:
                  xs = to_gpu(xs)
                  ts = to_gpu(ts)
                  loss = model.forward(xs, ts)
              total_loss += loss
      
              # 实现了一个进度条
              sys.stdout.write('\r%d / %d' % (iters, max_iters))
              sys.stdout.flush()
      
          print('')
          ppl = np.exp(total_loss / max_iters) # 返回验证集上的困惑度
          return ppl
  3. 从生成模型开始的学习代码如下:

    python 复制代码
        # 生成模型
        model = BetterRnnlm(vocab_size, wordvec_size, hidden_size)
        optimizer = SGD(lr)
        trainer = RnnlmTrainer(model, optimizer)
    
        best_ppl = float('inf')
        for epoch in range(max_epoch):
            # 每次的fit都只训练一个epoch,所以传入的max_epoch=1
            trainer.fit(xs, ts, max_epoch=1, batch_size=batch_size, time_size=time_size, max_grad=max_grad)
    
            model.reset_state()
            ppl = eval_perplexity(model, corpus_val) # 在验证集上进行前向计算然后评价困惑度
            print('valid perplexity: ', ppl)
    
            if best_ppl > ppl:
                # 此时这一个epoch的模型效果更好
                best_ppl = ppl
                model.save_params()
            else:
                # 否则困惑度更大,模型效果变差,则调整学习率
                lr /= 4.0
                optimizer.lr = lr
    
            model.reset_state() # 验证完了之后下个epoch训练前还要重置一下h和c
            print('-' * 50)
    
    
        # 基于验证数据进行评价
        model.reset_state()
        ppl_test = eval_perplexity(model, corpus_test)
        print('test perplexity: ', ppl_test)
  4. 训练过程和结果如下:

    1. 由于堆叠了Time LSTM层,网络的参数量大幅增加,且相关超参数也增加了;可以看到显卡占用比原来增加了:

    2. 每次训练完都会进行验证集上的困惑度的计算:

    3. 下图是训练结果;训练集上最终的困惑度降低到了三四十;验证集上困惑度为79;测试集上的困惑度为76;如下图所示:

4总结

  1. 本章我们用LSTM来代替RNN,从而缓解梯度消失的问题,能够控制梯度的流动;
  2. 本节咱们加深了神经网络的层数,为了防止过拟合,加入了dropout层;另外,对于能够权重共享的,我们进行权重共享;实现了效果的提升;
  3. 书上还有一部分是其他的一些研究,这里就不说了;
相关推荐
hunter20620619 分钟前
用opencv生成视频流,然后用rtsp进行拉流显示
人工智能·python·opencv
Daphnis_z21 分钟前
大模型应用编排工具Dify之常用编排组件
人工智能·chatgpt·prompt
yuanbenshidiaos1 小时前
【大数据】机器学习----------强化学习机器学习阶段尾声
人工智能·机器学习
好评笔记6 小时前
AIGC视频生成模型:Stability AI的SVD(Stable Video Diffusion)模型
论文阅读·人工智能·深度学习·机器学习·计算机视觉·面试·aigc
算家云7 小时前
TangoFlux 本地部署实用教程:开启无限音频创意脑洞
人工智能·aigc·模型搭建·算家云、·应用社区·tangoflux
叫我:松哥8 小时前
基于Python django的音乐用户偏好分析及可视化系统设计与实现
人工智能·后端·python·mysql·数据分析·django
熊文豪9 小时前
深入解析人工智能中的协同过滤算法及其在推荐系统中的应用与优化
人工智能·算法
Vol火山9 小时前
AI引领工业制造智能化革命:机器视觉与时序数据预测的双重驱动
人工智能·制造
tuan_zhang10 小时前
第17章 安全培训筑牢梦想根基
人工智能·安全·工业软件·太空探索·战略欺骗·算法攻坚
Antonio91510 小时前
【opencv】第10章 角点检测
人工智能·opencv·计算机视觉