论文总结:A Survey on Evaluation of Large Language Models-鲁棒性相关内容

A Survey on Evaluation of Large Language Models

只取了鲁棒性相关的内容

LLMs:《A Survey on Evaluation of Large Language Models大型语言模型评估综述》理解智能本质(具备推理能力)、AI评估的重要性(识别当前算法的局限性+设


3.2.1 Robustness鲁棒性:两方面考察(分布外泛化OOD+对抗鲁棒性)、评估ChatGPT(AdvGLUE+ANLI+DDXPlus+AdvGLUE++,PromptBench基准)、两方面脆弱(语言输入的对抗性提示+视觉输入)

评估系统面对意外输入的稳定性是鲁棒性研究的核心,主要从对抗鲁棒性和出分布泛化两方面考察大语言模型,发现当前模型对对抗性提示和视觉输入显著脆弱,提示模型在部署中面临安全隐患,需要继续提高模型的鲁棒性。

鲁棒性研究系统在面对意外输入时的稳定性。

具体来说,分布外(out- distribution, OOD) (Wang et al., 2022)和对抗性鲁棒性是鲁棒性的两个热门研究课题。Wang等人(2023c)是一项早期工作,使用AdvGLUE (Wang等人,2021)、ANLI (Nie等人,2019)和DDXPlus (Fansi Tchango等人,2022)数据集等现有基准,从对抗性和OOD角度评估了ChatGPT和其他LLMs。卓等人(2023b)评估了语义解析的鲁棒性。Yang等人(2022)通过扩展GLUE (Wang等人,2018)数据集来评估OOD的鲁棒性。本研究的结果强调了当操纵视觉输入时对整个系统安全的潜在风险。

对于视觉语言模型,Zhao等人(2023b)对视觉输入上的LLMs进行了评估,并将其转移到其他视觉语言模型上,揭示了视觉输入的脆弱性。

Li等人(2023b)概述了语言模型的OOD评估:对抗性鲁棒性、领域泛化和数据集偏差。作者对三个研究线进行了比较和统一,总结了每个研究线的数据生成过程和评估方案,并强调了未来工作的挑战和机遇。

对于对抗鲁棒性,朱等人(2023)通过提出一个名为PromptBench的统一基准,评估了LLM对提示的鲁棒性。他们全面评估了多个级别(字符、单词、句子和语义)的对抗性文本攻击。结果表明,当面对对抗性输入时,现代LLM容易受到对抗性提示的攻击,强调了模型的鲁棒性的重要性。至于新的对抗性数据集,王等人(2023a)引入了AdvGLUE++基准数据集来评估对抗鲁棒性,并实施了一个新的评估协议,通过越狱系统提示来审查机器道德。

相关推荐
皓7416 分钟前
服饰电商行业知识管理的创新实践与知识中台的重要性
大数据·人工智能·科技·数据分析·零售
985小水博一枚呀44 分钟前
【深度学习滑坡制图|论文解读3】基于融合CNN-Transformer网络和深度迁移学习的遥感影像滑坡制图方法
人工智能·深度学习·神经网络·cnn·transformer
AltmanChan1 小时前
大语言模型安全威胁
人工智能·安全·语言模型
985小水博一枚呀1 小时前
【深度学习滑坡制图|论文解读2】基于融合CNN-Transformer网络和深度迁移学习的遥感影像滑坡制图方法
人工智能·深度学习·神经网络·cnn·transformer·迁移学习
数据与后端架构提升之路1 小时前
从神经元到神经网络:深度学习的进化之旅
人工智能·神经网络·学习
爱技术的小伙子1 小时前
【ChatGPT】如何通过逐步提示提高ChatGPT的细节描写
人工智能·chatgpt
深度学习实战训练营2 小时前
基于CNN-RNN的影像报告生成
人工智能·深度学习
昨日之日20064 小时前
Moonshine - 新型开源ASR(语音识别)模型,体积小,速度快,比OpenAI Whisper快五倍 本地一键整合包下载
人工智能·whisper·语音识别
浮生如梦_4 小时前
Halcon基于laws纹理特征的SVM分类
图像处理·人工智能·算法·支持向量机·计算机视觉·分类·视觉检测
深度学习lover4 小时前
<项目代码>YOLOv8 苹果腐烂识别<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·苹果腐烂识别