LLM模型之基于MindSpore通过GPT实现情感分类

前言

复制代码
# 该案例在 mindnlp 0.3.1 版本完成适配,如果发现案例跑不通,可以指定mindnlp版本,执行`!pip install mindnlp==0.3.1`
!pip install mindnlp
!pip install jieba
%env HF_ENDPOINT=https://hf-mirror.com

导入对应的包

复制代码
import os

import mindspore
from mindspore.dataset import text, GeneratorDataset, transforms
from mindspore import nn

from mindnlp.dataset import load_dataset

from mindnlp._legacy.engine import Trainer, Evaluator
from mindnlp._legacy.engine.callbacks import CheckpointCallback, BestModelCallback
from mindnlp._legacy.metrics import Accuracy

流程训练

复制代码
import numpy as np

def process_dataset(dataset, tokenizer, max_seq_len=512, batch_size=4, shuffle=False):
    is_ascend = mindspore.get_context('device_target') == 'Ascend'
    def tokenize(text):
        if is_ascend:
            tokenized = tokenizer(text, padding='max_length', truncation=True, max_length=max_seq_len)
        else:
            tokenized = tokenizer(text, truncation=True, max_length=max_seq_len)
        return tokenized['input_ids'], tokenized['attention_mask']

    if shuffle:
        dataset = dataset.shuffle(batch_size)

    # map dataset
    dataset = dataset.map(operations=[tokenize], input_columns="text", output_columns=['input_ids', 'attention_mask'])
    dataset = dataset.map(operations=transforms.TypeCast(mindspore.int32), input_columns="label", output_columns="labels")
    # batch dataset
    if is_ascend:
        dataset = dataset.batch(batch_size)
    else:
        dataset = dataset.padded_batch(batch_size, pad_info={'input_ids': (None, tokenizer.pad_token_id),
                                                             'attention_mask': (None, 0)})

    return dataset

from mindnlp.transformers import GPTTokenizer
# tokenizer
gpt_tokenizer = GPTTokenizer.from_pretrained('openai-gpt')

# add sepcial token: <PAD>
special_tokens_dict = {
    "bos_token": "<bos>",
    "eos_token": "<eos>",
    "pad_token": "<pad>",
}
num_added_toks = gpt_tokenizer.add_special_tokens(special_tokens_dict)

from mindnlp.transformers import GPTForSequenceClassification
from mindspore.experimental.optim import Adam

# set bert config and define parameters for training
model = GPTForSequenceClassification.from_pretrained('openai-gpt', num_labels=2)
model.config.pad_token_id = gpt_tokenizer.pad_token_id
model.resize_token_embeddings(model.config.vocab_size + 3)

optimizer = nn.Adam(model.trainable_params(), learning_rate=2e-5)

metric = Accuracy()

# define callbacks to save checkpoints
ckpoint_cb = CheckpointCallback(save_path='checkpoint', ckpt_name='gpt_imdb_finetune', epochs=1, keep_checkpoint_max=2)
best_model_cb = BestModelCallback(save_path='checkpoint', ckpt_name='gpt_imdb_finetune_best', auto_load=True)

trainer = Trainer(network=model, train_dataset=dataset_train,
                  eval_dataset=dataset_train, metrics=metric,
                  epochs=1, optimizer=optimizer, callbacks=[ckpoint_cb, best_model_cb],
                  jit=False)

总结

在情感分类任务中,首先通过`load_dataset`函数加载IMDB数据集,该数据集分为训练集和测试集,以确保有效利用标注好的电影评论进行模型训练和评估。在此过程中,还对数据进行预处理,包括去除无关字符和标准化文本格式,以提高模型效果。接下来,使用GPT Tokenizer对IMDB数据集中的评论进行分词,这一过程不仅将文本分割成单词或子词,还添加必要的特殊标记,如开始标记(<bos>)和结束标记(<eos>),确保模型能够正确理解文本结构和含义。最后,构建基于预训练GPT模型的情感分类模型,并根据IMDB数据集进行微调训练,以适应二分类任务的需求。

相关推荐
悟道心14 小时前
8. 自然语言处理NLP -GPT
人工智能·gpt·自然语言处理
周周爱喝粥呀2 天前
LLM 中的自回归模型与非自回归模型:GPT 和 BERT 的区别
人工智能·gpt·ai·回归
共绩算力2 天前
DeepSeek V3.2 迈向 GPT-5 级别性能的路径:稀疏注意力、大规模强化学习与上下文重用
人工智能·gpt·共绩算力
百***24372 天前
GPT-5.2 vs DeepSeek-V3.2 全维度对比:一步API适配下的研发选型指南
gpt
百***24372 天前
GPT-5.2与DeepSeek-V3.2选型指南:一步API通用下的全维度技术对比
gpt
维度攻城狮2 天前
科研提速!Zotero Awesome GPT 搭配本地 Ollama 模型使用指南
gpt·zotero·ollama·awesome gpt
victory04313 天前
同一prompt下 doubao qwen gpt kimi的模型训练时长预测不同表现
gpt·prompt
向量引擎3 天前
【万字硬核】解密GPT-5.2-Pro与Sora2底层架构:从Transformer到世界模型,手撸一个高并发AI中台(附Python源码+压测报告)
人工智能·gpt·ai·aigc·ai编程·ai写作·api调用
程序员佳佳4 天前
【万字硬核】从GPT-5.2到Sora2:深度解构多模态大模型的“物理直觉”与Python全栈落地指南(内含Banana2实测)
开发语言·python·gpt·chatgpt·ai作画·aigc·api
向量引擎4 天前
[架构师级] 压榨GPT-5.2与Sora 2的极限性能:从单体调用到高并发多模态Agent集群的演进之路(附全套Python源码与性能调优方案)
开发语言·人工智能·python·gpt·ai·ai写作·api调用