昇思学习打卡-24-自然语言处理/LSTM+CRF序列标注

文章目录

序列标注指给定输入序列,给序列中每个Token进行标注标签的过程。序列标注问题通常用于从文本中进行信息抽取,包括分词(Word Segmentation)、词性标注(Position Tagging)、命名实体识别(Named Entity Recognition, NER)等。

常见的实体标识的方法有BMES标注法(四位序列标注法)、BIO标注法(三位序列标注法)、BIOES标注法(四位序列标注法),这里使用了一种常见的命名实体识别的标注方法------"BIOE"标注,将一个实体(Entity)的开头标注为B,其他部分标注为I,非实体标注为O。

条件随机场(Conditional Random Field, CRF)

考虑到序列标注问题的线性序列特点,本节所述的条件随机场特指线性链条件随机场(Linear Chain CRF)

score计算

首先根据公式 (3)

计算正确标签序列所对应的得分,这里需要注意,除了转移概率矩阵 𝐏外,还需要维护两个大小为 |𝑇|的向量,分别作为序列开始和结束时的转移概率。同时我们引入了一个掩码矩阵 𝑚𝑎𝑠𝑘,将多个序列打包为一个Batch时填充的值忽略,使得 Score计算仅包含有效的Token。

python 复制代码
def compute_score(emissions, tags, seq_ends, mask, trans, start_trans, end_trans):
    # emissions: (seq_length, batch_size, num_tags)
    # tags: (seq_length, batch_size)
    # mask: (seq_length, batch_size)

    seq_length, batch_size = tags.shape
    mask = mask.astype(emissions.dtype)

    # 将score设置为初始转移概率
    # shape: (batch_size,)
    score = start_trans[tags[0]]
    # score += 第一次发射概率
    # shape: (batch_size,)
    score += emissions[0, mnp.arange(batch_size), tags[0]]

    for i in range(1, seq_length):
        # 标签由i-1转移至i的转移概率(当mask == 1时有效)
        # shape: (batch_size,)
        score += trans[tags[i - 1], tags[i]] * mask[i]

        # 预测tags[i]的发射概率(当mask == 1时有效)
        # shape: (batch_size,)
        score += emissions[i, mnp.arange(batch_size), tags[i]] * mask[i]

    # 结束转移
    # shape: (batch_size,)
    last_tags = tags[seq_ends, mnp.arange(batch_size)]
    # score += 结束转移概率
    # shape: (batch_size,)
    score += end_trans[last_tags]

    return score

Normalizer计算


python 复制代码
def compute_normalizer(emissions, mask, trans, start_trans, end_trans):
    # emissions: (seq_length, batch_size, num_tags)
    # mask: (seq_length, batch_size)

    seq_length = emissions.shape[0]

    # 将score设置为初始转移概率,并加上第一次发射概率
    # shape: (batch_size, num_tags)
    score = start_trans + emissions[0]

    for i in range(1, seq_length):
        # 扩展score的维度用于总score的计算
        # shape: (batch_size, num_tags, 1)
        broadcast_score = score.expand_dims(2)

        # 扩展emission的维度用于总score的计算
        # shape: (batch_size, 1, num_tags)
        broadcast_emissions = emissions[i].expand_dims(1)

        # 根据公式(7),计算score_i
        # 此时broadcast_score是由第0个到当前Token所有可能路径
        # 对应score的log_sum_exp
        # shape: (batch_size, num_tags, num_tags)
        next_score = broadcast_score + trans + broadcast_emissions

        # 对score_i做log_sum_exp运算,用于下一个Token的score计算
        # shape: (batch_size, num_tags)
        next_score = ops.logsumexp(next_score, axis=1)

        # 当mask == 1时,score才会变化
        # shape: (batch_size, num_tags)
        score = mnp.where(mask[i].expand_dims(1), next_score, score)

    # 最后加结束转移概率
    # shape: (batch_size, num_tags)
    score += end_trans
    # 对所有可能的路径得分求log_sum_exp
    # shape: (batch_size,)
    return ops.logsumexp(score, axis=1)

Viterbi算法

python 复制代码
def viterbi_decode(emissions, mask, trans, start_trans, end_trans):
    # emissions: (seq_length, batch_size, num_tags)
    # mask: (seq_length, batch_size)

    seq_length = mask.shape[0]

    score = start_trans + emissions[0]
    history = ()

    for i in range(1, seq_length):
        broadcast_score = score.expand_dims(2)
        broadcast_emission = emissions[i].expand_dims(1)
        next_score = broadcast_score + trans + broadcast_emission

        # 求当前Token对应score取值最大的标签,并保存
        indices = next_score.argmax(axis=1)
        history += (indices,)

        next_score = next_score.max(axis=1)
        score = mnp.where(mask[i].expand_dims(1), next_score, score)

    score += end_trans

    return score, history

def post_decode(score, history, seq_length):
    # 使用Score和History计算最佳预测序列
    batch_size = seq_length.shape[0]
    seq_ends = seq_length - 1
    # shape: (batch_size,)
    best_tags_list = []

    # 依次对一个Batch中每个样例进行解码
    for idx in range(batch_size):
        # 查找使最后一个Token对应的预测概率最大的标签,
        # 并将其添加至最佳预测序列存储的列表中
        best_last_tag = score[idx].argmax(axis=0)
        best_tags = [int(best_last_tag.asnumpy())]

        # 重复查找每个Token对应的预测概率最大的标签,加入列表
        for hist in reversed(history[:seq_ends[idx]]):
            best_last_tag = hist[idx][best_tags[-1]]
            best_tags.append(int(best_last_tag.asnumpy()))

        # 将逆序求解的序列标签重置为正序
        best_tags.reverse()
        best_tags_list.append(best_tags)

    return best_tags_list

CRF层

完成上述前向训练和解码部分的代码后,将其组装完整的CRF层。考虑到输入序列可能存在Padding的情况,CRF的输入需要考虑输入序列的真实长度,因此除发射矩阵和标签外,加入seq_length参数传入序列Padding前的长度,并实现生成mask矩阵的sequence_mask方法。

综合上述代码,使用nn.Cell进行封装,最后实现完整的CRF层如下:

python 复制代码
import mindspore as ms
import mindspore.nn as nn
import mindspore.ops as ops
import mindspore.numpy as mnp
from mindspore.common.initializer import initializer, Uniform

def sequence_mask(seq_length, max_length, batch_first=False):
    """根据序列实际长度和最大长度生成mask矩阵"""
    range_vector = mnp.arange(0, max_length, 1, seq_length.dtype)
    result = range_vector < seq_length.view(seq_length.shape + (1,))
    if batch_first:
        return result.astype(ms.int64)
    return result.astype(ms.int64).swapaxes(0, 1)

class CRF(nn.Cell):
    def __init__(self, num_tags: int, batch_first: bool = False, reduction: str = 'sum') -> None:
        if num_tags <= 0:
            raise ValueError(f'invalid number of tags: {num_tags}')
        super().__init__()
        if reduction not in ('none', 'sum', 'mean', 'token_mean'):
            raise ValueError(f'invalid reduction: {reduction}')
        self.num_tags = num_tags
        self.batch_first = batch_first
        self.reduction = reduction
        self.start_transitions = ms.Parameter(initializer(Uniform(0.1), (num_tags,)), name='start_transitions')
        self.end_transitions = ms.Parameter(initializer(Uniform(0.1), (num_tags,)), name='end_transitions')
        self.transitions = ms.Parameter(initializer(Uniform(0.1), (num_tags, num_tags)), name='transitions')

    def construct(self, emissions, tags=None, seq_length=None):
        if tags is None:
            return self._decode(emissions, seq_length)
        return self._forward(emissions, tags, seq_length)

    def _forward(self, emissions, tags=None, seq_length=None):
        if self.batch_first:
            batch_size, max_length = tags.shape
            emissions = emissions.swapaxes(0, 1)
            tags = tags.swapaxes(0, 1)
        else:
            max_length, batch_size = tags.shape

        if seq_length is None:
            seq_length = mnp.full((batch_size,), max_length, ms.int64)

        mask = sequence_mask(seq_length, max_length)

        # shape: (batch_size,)
        numerator = compute_score(emissions, tags, seq_length-1, mask, self.transitions, self.start_transitions, self.end_transitions)
        # shape: (batch_size,)
        denominator = compute_normalizer(emissions, mask, self.transitions, self.start_transitions, self.end_transitions)
        # shape: (batch_size,)
        llh = denominator - numerator

        if self.reduction == 'none':
            return llh
        if self.reduction == 'sum':
            return llh.sum()
        if self.reduction == 'mean':
            return llh.mean()
        return llh.sum() / mask.astype(emissions.dtype).sum()

    def _decode(self, emissions, seq_length=None):
        if self.batch_first:
            batch_size, max_length = emissions.shape[:2]
            emissions = emissions.swapaxes(0, 1)
        else:
            batch_size, max_length = emissions.shape[:2]

        if seq_length is None:
            seq_length = mnp.full((batch_size,), max_length, ms.int64)

        mask = sequence_mask(seq_length, max_length)

        return viterbi_decode(emissions, mask, self.transitions, self.start_transitions, self.end_transitions)

BiLSTM+CRF模型

在实现CRF后,我们设计一个双向LSTM+CRF的模型来进行命名实体识别任务的训练。模型结构如下:nn.Embedding -> nn.LSTM -> nn.Dense -> CRF,其中LSTM提取序列特征,经过Dense层变换获得发射概率矩阵,最后送入CRF层。具体实现如下:

python 复制代码
class BiLSTM_CRF(nn.Cell):
    def __init__(self, vocab_size, embedding_dim, hidden_dim, num_tags, padding_idx=0):
        super().__init__()
        self.embedding = nn.Embedding(vocab_size, embedding_dim, padding_idx=padding_idx)
        self.lstm = nn.LSTM(embedding_dim, hidden_dim // 2, bidirectional=True, batch_first=True)
        self.hidden2tag = nn.Dense(hidden_dim, num_tags, 'he_uniform')
        self.crf = CRF(num_tags, batch_first=True)

    def construct(self, inputs, seq_length, tags=None):
        embeds = self.embedding(inputs)
        outputs, _ = self.lstm(embeds, seq_length=seq_length)
        feats = self.hidden2tag(outputs)

        crf_outs = self.crf(feats, tags, seq_length)
        return crf_outs

效果展示

此章节学习到此结束,感谢昇思平台。

相关推荐
wang_book15 分钟前
Gitlab学习(007 gitlab项目操作)
java·运维·git·学习·spring·gitlab
weixin_4554461740 分钟前
Python学习的主要知识框架
开发语言·python·学习
Ylucius3 小时前
动态语言? 静态语言? ------区别何在?java,js,c,c++,python分给是静态or动态语言?
java·c语言·javascript·c++·python·学习
LvManBa3 小时前
Vue学习记录之六(组件实战及BEM框架了解)
vue.js·学习·rust
LvManBa4 小时前
Vue学习记录之三(ref全家桶)
javascript·vue.js·学习
知识分享小能手4 小时前
mysql学习教程,从入门到精通,SQL DISTINCT 子句 (16)
大数据·开发语言·sql·学习·mysql·数据分析·数据库开发
wx7408513266 小时前
小琳AI课堂:大语言模型如何符合伦理限制
人工智能·语言模型·自然语言处理
晓幂6 小时前
CTFShow-信息搜集
笔记·学习
cyr___6 小时前
Unity教程(十六)敌人攻击状态的实现
学习·游戏·unity·游戏引擎