图像预处理(基础功能)

OpenCV

读取图像:

python 复制代码
img = cv2.imread(文件名,[显示控制参数])  #读取图像
cv2.imread(filename, flags=cv2.IMREAD_COLOR)
filename: str

描述: 需要读取的图像文件的路径和文件名。

类型: 字符串。

flags: int (可选)

描述: 图像的读取模式。这个参数决定了图像如何被读入:

cv2.IMREAD_COLOR 或 1: 读取彩色图像(默认值)。图像将被读入为一个三通道的 BGR 图像。

cv2.IMREAD_GRAYSCALE 或 0: 读取灰度图像。图像将被读入为一个单通道的灰度图像。

cv2.IMREAD_UNCHANGED 或 -1: 读取图像及其 alpha 通道(如果存在)。图像将被读入为一个包括所有##通道的图像(通常为 BGRA)。*/

调整大小

python 复制代码
cv2.resize(src, dsize, fx=0, fy=0, interpolation=cv2.INTER_LINEAR)
参数说明:
  1. src : ndarray

    • 描述: 要调整大小的输入图像。
    • 类型: 图像数据。
  2. dsize : tuple

    • 描述 : 输出图像的尺寸 (宽度, 高度)
    • 类型: 元组。
  3. fx : float (可选)

    • 描述 : 水平缩放因子。如果 dsize 被指定,这个参数可以忽略。
    • 类型: 浮点数。
  4. fy : float (可选)

    • 描述 : 垂直缩放因子。如果 dsize 被指定,这个参数可以忽略。
    • 类型: 浮点数。
  5. interpolation : int (可选)

    • 描述 : 插值方法。用于图像大小调整的插值算法。常用选项包括:
      • cv2.INTER_LINEAR: 双线性插值(默认值)。
      • cv2.INTER_NEAREST: 最近邻插值。
      • cv2.INTER_CUBIC: 三次插值。
      • cv2.INTER_LANCZOS4: Lanczos 插值。

展示图片

python 复制代码
cv2.imshow(窗口名,图像名)           #显示图像
#示例
cv2.imshow(demo,img)
cv2.waitKey(2000)       #显示时间2000ms
cv2.destroyAllWindows()#清除所有窗口


#图像保存
cv2.imwrite(文件地址,文件名)
cv2.imwrite("/home/test.jpg",img)
  1. 读取图片 :使用 cv2.imread() 函数读取图像。
  2. 显示图片 :使用 cv2.imshow() 函数显示读取的图像。
  3. 等待用户按键 :使用 cv2.waitKey() 函数等待用户的按键输入。如果参数为0,则无限等待,直到用户按下某个键。
  4. 关闭窗口 :使用 cv2.destroyAllWindows() 函数关闭所有打开的窗口。

PIL

打开和保存

python 复制代码
from PIL import Image

# 打开图像
img = Image.open("example.jpg")

# 保存图像
img.save("example_copy.png")

裁剪缩放旋转翻转

python 复制代码
# 裁剪图像
left = 100
top = 100
right = 400
bottom = 400
cropped_img = img.crop((left, top, right, bottom))

# 调整图像大小
resized_img = img.resize((200, 200))

# 旋转图像
rotated_img = img.rotate(90)

# 水平翻转图像
flipped_img = img.transpose(Image.FLIP_LEFT_RIGHT)
resize
python 复制代码
from PIL import Image

# 打开图像文件
img = Image.open("example.jpg")

# 指定新的尺寸 (宽度, 高度)
new_size = (200, 200)

# 使用resize()方法调整图像大小
resized_img = img.resize(new_size)

# 保存调整后的图像
resized_img.save("resized_example.jpg")

# 显示调整后的图像
resized_img.show()

转换模式:如RGB、L mode(灰度图像)等

python 复制代码
# 转换为灰度图像
gray_img = img.convert("L")

# 转换为RGBA图像(带透明度)
rgba_img = img.convert("RGBA")
相关推荐
成富1 小时前
文本转SQL(Text-to-SQL),场景介绍与 Spring AI 实现
数据库·人工智能·sql·spring·oracle
凤枭香1 小时前
Python OpenCV 傅里叶变换
开发语言·图像处理·python·opencv
CSDN云计算1 小时前
如何以开源加速AI企业落地,红帽带来新解法
人工智能·开源·openshift·红帽·instructlab
艾派森1 小时前
大数据分析案例-基于随机森林算法的智能手机价格预测模型
人工智能·python·随机森林·机器学习·数据挖掘
hairenjing11231 小时前
在 Android 手机上从SD 卡恢复数据的 6 个有效应用程序
android·人工智能·windows·macos·智能手机
小蜗子2 小时前
Multi‐modal knowledge graph inference via media convergenceand logic rule
人工智能·知识图谱
SpikeKing2 小时前
LLM - 使用 LLaMA-Factory 微调大模型 环境配置与训练推理 教程 (1)
人工智能·llm·大语言模型·llama·环境配置·llamafactory·训练框架
黄焖鸡能干四碗2 小时前
信息化运维方案,实施方案,开发方案,信息中心安全运维资料(软件资料word)
大数据·人工智能·软件需求·设计规范·规格说明书
2 小时前
开源竞争-数据驱动成长-11/05-大专生的思考
人工智能·笔记·学习·算法·机器学习
ctrey_2 小时前
2024-11-4 学习人工智能的Day21 openCV(3)
人工智能·opencv·学习