机器学习(二十一):错误分析、创造数据和迁移学习

一、错误分析

假设交叉验证集一共有500个数据点,模型拟合结果中,有100个数据点有误。

错误分析就是,手动地分析这100个错误数据(或随机选择一些错误数据),根据它们的共同属性、共同特征分类,然后根据特征进一步优化模型。

二、创造数据

首先,获取大量数据的成本很高,错误分析可以告诉我们,着重获取某一方面/特征的数据,而不是获取所有数据,可以减少成本。

当需要获取更多数据时,常用的添加数据的方法有数据增强和数据合成:

2.1 数据增强

数据增强:对原数据进行扭曲或改变,创造更多格外数据,常用于图像和语言类型的任务

例如,图像识别:通过把已有的图像进行旋转、放大、缩小、调整对比度、镜像、网格扭曲图像,创造更多的额外数据

语音识别:增加噪音背景,降低音质(像是在坏的录音机录制一样的声音)

2.2 数据合成

数据合成:创造合成,主要应用于计算机视觉任务。

例如:识别图像中文字的任务:可以在文本编辑器随机敲入一些文本,把不同字体、对比度、颜色的字体进行截图,创造合成数据。

三、迁移学习

对于没有大量数据的学习任务,可以使用迁移学习,使用来自不同任务的数据来帮助训练模型。

第一步:监督预训练

在拥有大型数据集的任务中,预先训练神经网络。例如此任务从大量图片中训练识别1000种分类:猫、狗、车、人等等,训练出隐藏层的参数。

第二步:微调

在数据量小的任务中,使用预先训练好的神经网络,隐藏层参数使用预先训练出的参数,然后使用本任务的数据进行参数微调。例如本任务需要从少量图片中训练识别数字0-9,可以使用上一步训练好的参数w1-w4,b1-b4,然后使用本任务的输入图片微调参数。

如果数据量很小,就只需要微调输出层参数;如果数据量大,可以微调所有参数。

微调的前提是使用和预训练相同类型的输入。

常用的操作:

  1. 下载具有相同类型的、在大型数据集上预先训练过的神经网络
  2. 使用自己的数据进行微调

四、机器学习项目的完整周期

机器学习项目的完整周期:

部署到生产环境以后,需要继续监控系统和维护系统,如果有需要,需要获取更多数据,重新训练模型。

学习来源:吴恩达机器学习,13.1-13.6节

相关推荐
weixin_307779135 分钟前
基于AWS服务的客户服务电话情感分析解决方案
人工智能·深度学习·机器学习·云计算·aws
极客BIM工作室17 分钟前
U-Net 的输入与输出:通用场景与扩散模型场景解析
人工智能·深度学习·计算机视觉
说私域27 分钟前
定制开发开源AI智能名片S2B2C商城小程序中的羊群效应应用研究
人工智能·小程序
databook1 小时前
AI辅助编程下的软件分层设计:让生成的代码井然有序
人工智能·程序员·架构
向阳逐梦1 小时前
一篇图文详解PID调参细节,实现PID入门到精通
人工智能·机器人
来让爷抱一个1 小时前
2025年企业智慧大脑升级指南:PandaWiki如何用AI重构知识生产力
人工智能·重构
第七序章1 小时前
【C + +】C++11 (下) | 类新功能 + STL 变化 + 包装器全解析
c语言·数据结构·c++·人工智能·哈希算法·1024程序员节
FriendshipT1 小时前
图像生成:PyTorch从零开始实现一个简单的扩散模型
人工智能·pytorch·python
格林威2 小时前
AOI在化学药剂检测领域中的应用
人工智能·数码相机·计算机视觉·目标跟踪·视觉检测·制造·机器视觉
mit6.8242 小时前
[DeepOCR] 生成控制 | NoRepeatNGramLogitsProcessor | 配置`SamplingParams`
人工智能·深度学习·机器学习