机器学习(二十一):错误分析、创造数据和迁移学习

一、错误分析

假设交叉验证集一共有500个数据点,模型拟合结果中,有100个数据点有误。

错误分析就是,手动地分析这100个错误数据(或随机选择一些错误数据),根据它们的共同属性、共同特征分类,然后根据特征进一步优化模型。

二、创造数据

首先,获取大量数据的成本很高,错误分析可以告诉我们,着重获取某一方面/特征的数据,而不是获取所有数据,可以减少成本。

当需要获取更多数据时,常用的添加数据的方法有数据增强和数据合成:

2.1 数据增强

数据增强:对原数据进行扭曲或改变,创造更多格外数据,常用于图像和语言类型的任务

例如,图像识别:通过把已有的图像进行旋转、放大、缩小、调整对比度、镜像、网格扭曲图像,创造更多的额外数据

语音识别:增加噪音背景,降低音质(像是在坏的录音机录制一样的声音)

2.2 数据合成

数据合成:创造合成,主要应用于计算机视觉任务。

例如:识别图像中文字的任务:可以在文本编辑器随机敲入一些文本,把不同字体、对比度、颜色的字体进行截图,创造合成数据。

三、迁移学习

对于没有大量数据的学习任务,可以使用迁移学习,使用来自不同任务的数据来帮助训练模型。

第一步:监督预训练

在拥有大型数据集的任务中,预先训练神经网络。例如此任务从大量图片中训练识别1000种分类:猫、狗、车、人等等,训练出隐藏层的参数。

第二步:微调

在数据量小的任务中,使用预先训练好的神经网络,隐藏层参数使用预先训练出的参数,然后使用本任务的数据进行参数微调。例如本任务需要从少量图片中训练识别数字0-9,可以使用上一步训练好的参数w1-w4,b1-b4,然后使用本任务的输入图片微调参数。

如果数据量很小,就只需要微调输出层参数;如果数据量大,可以微调所有参数。

微调的前提是使用和预训练相同类型的输入。

常用的操作:

  1. 下载具有相同类型的、在大型数据集上预先训练过的神经网络
  2. 使用自己的数据进行微调

四、机器学习项目的完整周期

机器学习项目的完整周期:

部署到生产环境以后,需要继续监控系统和维护系统,如果有需要,需要获取更多数据,重新训练模型。

学习来源:吴恩达机器学习,13.1-13.6节

相关推荐
AC赳赳老秦37 分钟前
DeepSeek教育科技应用:智能生成个性化学习规划与知识点拆解教程
前端·网络·数据库·人工智能·学习·matplotlib·deepseek
拓端研究室2 小时前
2026年医药行业展望报告:创新、出海、AI医疗与商业化|附220+份报告PDF、数据、可视化模板汇总下载
大数据·人工智能
shayudiandian2 小时前
模型压缩与量化:让AI更轻更快
人工智能
LeonIter2 小时前
用回归分析为短剧APP“号脉”:我们如何找到留存的关键驱动力与产品迭代优先级?
人工智能·数据挖掘·回归
后端小张2 小时前
【AI学习】深入探秘AI之神经网络的奥秘
人工智能·深度学习·神经网络·opencv·学习·机器学习·自然语言处理
说私域3 小时前
社群经济视域下智能名片链动2+1模式商城小程序的商业价值重构
人工智能·小程序·重构·开源
NAGNIP7 小时前
GPT-5.1 发布:更聪明,也更有温度的 AI
人工智能·算法
NAGNIP7 小时前
激活函数有什么用?有哪些常用的激活函数?
人工智能·算法
骚戴8 小时前
2025 Python AI 实战:零基础调用 LLM API 开发指南
人工智能·python·大模型·llm·api·ai gateway
Cherry的跨界思维8 小时前
【AI测试全栈:质量模型】4、新AI测试金字塔:从单元到社会的四层测试策略落地指南
人工智能·单元测试·集成测试·ai测试·全栈ai·全栈ai测试·社会测试