机器学习(二十一):错误分析、创造数据和迁移学习

一、错误分析

假设交叉验证集一共有500个数据点,模型拟合结果中,有100个数据点有误。

错误分析就是,手动地分析这100个错误数据(或随机选择一些错误数据),根据它们的共同属性、共同特征分类,然后根据特征进一步优化模型。

二、创造数据

首先,获取大量数据的成本很高,错误分析可以告诉我们,着重获取某一方面/特征的数据,而不是获取所有数据,可以减少成本。

当需要获取更多数据时,常用的添加数据的方法有数据增强和数据合成:

2.1 数据增强

数据增强:对原数据进行扭曲或改变,创造更多格外数据,常用于图像和语言类型的任务

例如,图像识别:通过把已有的图像进行旋转、放大、缩小、调整对比度、镜像、网格扭曲图像,创造更多的额外数据

语音识别:增加噪音背景,降低音质(像是在坏的录音机录制一样的声音)

2.2 数据合成

数据合成:创造合成,主要应用于计算机视觉任务。

例如:识别图像中文字的任务:可以在文本编辑器随机敲入一些文本,把不同字体、对比度、颜色的字体进行截图,创造合成数据。

三、迁移学习

对于没有大量数据的学习任务,可以使用迁移学习,使用来自不同任务的数据来帮助训练模型。

第一步:监督预训练

在拥有大型数据集的任务中,预先训练神经网络。例如此任务从大量图片中训练识别1000种分类:猫、狗、车、人等等,训练出隐藏层的参数。

第二步:微调

在数据量小的任务中,使用预先训练好的神经网络,隐藏层参数使用预先训练出的参数,然后使用本任务的数据进行参数微调。例如本任务需要从少量图片中训练识别数字0-9,可以使用上一步训练好的参数w1-w4,b1-b4,然后使用本任务的输入图片微调参数。

如果数据量很小,就只需要微调输出层参数;如果数据量大,可以微调所有参数。

微调的前提是使用和预训练相同类型的输入。

常用的操作:

  1. 下载具有相同类型的、在大型数据集上预先训练过的神经网络
  2. 使用自己的数据进行微调

四、机器学习项目的完整周期

机器学习项目的完整周期:

部署到生产环境以后,需要继续监控系统和维护系统,如果有需要,需要获取更多数据,重新训练模型。

学习来源:吴恩达机器学习,13.1-13.6节

相关推荐
bluetata2 分钟前
Spring AI 使用 AWS Amazon Nova 模型
人工智能·spring·aws
audyxiao00112 分钟前
智慧医疗顶会MICCAI 2025获奖论文精彩看点
人工智能·智慧医疗顶会·miccai
Android技术之家12 分钟前
2025年度Android行业总结:AI驱动生态重构,跨端融合开启新篇
android·人工智能·重构
easy_coder12 分钟前
从“未知故障”到“自治诊断”:基于双路召回与RAG的智能诊断系统构建
人工智能·云原生·云计算
中科天工16 分钟前
如何实现工业AI在智能制造中的应用?
大数据·人工智能·智能
linmoo198618 分钟前
Langchain4j 系列之六 - 提示词
人工智能·langchain·prompt·提示词·message·langchain4j
openinstall全渠道统计20 分钟前
【破局游戏体验困局:openinstall能助力App实现什么?】
人工智能
liulanba23 分钟前
AI Agent技术完整指南 第四部分:实战项目
人工智能
程序员JerrySUN29 分钟前
用 OP-TEE 给 AI 模型“上锁”:密文存储、TEE 解密放行、推理后销毁(实战可落地)
人工智能·系统安全·安全架构·安全性测试
xfchsjh30 分钟前
在2025AI体验时代,看深圳河北上海设计公司重新定义数字科技展厅
人工智能·科技·设计·艺术·展厅设计·科技展厅设计·数字展厅设计