韦东山嵌入式linux系列-具体单板的按键驱动程序(查询方式)

1 GPIO 操作回顾

(1)使能模块;

(2)设置引脚的模式(工作于GPIO模式);

(3)设置GPIO本身(输入/输出);

(4)GPIO作为输入引脚时,读某个data寄存器获得引脚的电平。

2 百问网 STM32MP157 的按键驱动程序(查询方式)

在 STM32MP157 开发板上,我们为它设计了 2 个按键。

2.1 先看原理图确定引脚及操作方法

平时按键电平为低,按下按键后电平为高。

按键引脚为GPIOG_IO03、 GPIOG_IO02。

2.2 再看芯片手册确定寄存器及操作方法

步骤1:使能GPIOG

下图为针对 APU 的 GPIOA 至 K 的时钟使能寄存器,低11位有效。为了使用GPIOG,我们需要将对应的 b[6]位设置为 1

英文明明写的是MPU

MPU/MCU -- Microprocessor/Micro controller Unit, 微处理器/微控制器,一般用于低计算应用的RISC计算机体系架构产品,如ARM-M系列处理器。

APU、BPU、CPU、DPU、FPU、GPU、HPU、IPU、MPU、NPU、RPU、TPU、VPU、WPU、XPU、ZPU 都是什么? - 一杯清酒邀明月 - 博客园 (cnblogs.com)
地址偏移量:0xA28

复位值:0x0000 0000

该寄存器用于将相应外设的外设时钟使能位设置为"1"。它将用于为MPU分配外设。写"0"没有作用,读有作用,返回相应位的有效值。写入'1'将相应的位设置为'1'

Bits 31:11保留,必须保持在复位值。

bit10 GPIOKEN: GPIOK外设时钟使能软件设置。

0:写"0"无效,读"0"表示禁用外设时钟

1:写"1"使能外设时钟,读"1"使能外设时钟

其他位一样

步骤2:设置GPIOG_IO03、 GPIOG_IO02为GPIO输入模式

GPIOx_MODER用于配置GPIO的模式,包括输入、通用输出、多功能和模拟共四种模式。该寄存器共32位,涉及16个GPIO,每个GPIO对应 2 位。GPIOx_MODER 的各位定义如下,在这里分别选择00和01两种,各自对应输入和输出模式。(上电默认为输入悬空模式)。其中 00 对应输入功能, 01 对应输出功能

设置 b[7:6]为00就可以配置GPIOG_IO03为输入模式,

配置 b[5:4]为00就可以配置GPIOG_IO02为输入模式。

步骤 3:读取GPIOG_IO02、GPIOG_IO03引脚电平

寄存器地址为:

在参考手册搜关键字gpio

读取 IDR 寄存器获取引脚状态寄存器,得到引脚电平

Bits 31:16保留,必须保持复位值。

bit 15:0 IDR[15:0]:端口x输入数据I/O引脚y (y = 15 ~ 0),这些位是只读的。它们包含相应I/O端口的输入值。

3 代码

board_drv.c

cpp 复制代码
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/fcntl.h>
#include <linux/fs.h>
#include <linux/signal.h>
#include <linux/mutex.h>
#include <linux/mm.h>
#include <linux/timer.h>
#include <linux/wait.h>
#include <linux/skbuff.h>
#include <linux/proc_fs.h>
#include <linux/poll.h>
#include <linux/capi.h>
#include <linux/kernelcapi.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/moduleparam.h>

#include "button_drv.h"


// 1主设备号
static int major = 0;
static struct class* button_class;
static struct button_operations *p_button_operations;


void register_button_operations(struct button_operations *opr)
{
	int i;
	p_button_operations = opr;
	for (i = 0; i < opr->count; i++)
	{
		device_create(button_class, NULL, MKDEV(major, i), NULL, "winter_button@%d", i);
	}
}

void unregister_button_operations(void)
{
	int i;
	for (i = 0; i < p_button_operations->count; i++)
	{
		device_destroy(button_class, MKDEV(major, i));
	}
}

EXPORT_SYMBOL(register_button_operations);
EXPORT_SYMBOL(unregister_button_operations);


// 3实现open/read函数
static int button_open (struct inode *inode, struct file *file)
{
	int minor = iminor(inode);
	// 利用此设备号初始化
	p_button_operations->init(minor);
	return 0;
}

static ssize_t button_read (struct file *file, char __user *buf, size_t size, loff_t *off)
{
	unsigned int minor = iminor(file_inode(file));
	char level;
	int err;
	
	level = p_button_operations->read(minor);
	// 将内核数据拷贝到用户空间,也就是读数据
	err = copy_to_user(buf, &level, 1);
	return 1;
}


// 2file_operations结构体
static struct file_operations button_operations = {
	.open = button_open,
	.read = button_read,
};

// 4在入口函数中注册file_operations结构体
int button_init(void)
{
	// 注册file_operations结构体
	major = register_chrdev(0, "winter_button", &button_operations);
	// 注册结点
	button_class = class_create(THIS_MODULE, "winter_button");
	if (IS_ERR(button_class))
		return -1;
	
	return 0;

}

// 出口函数
void button_exit(void)
{
	class_destroy(button_class);
	unregister_chrdev(major, "winter_button");
}

module_init(button_init);
module_exit(button_exit);
MODULE_LICENSE("GPL");

board_drv.h

cpp 复制代码
#ifndef BUTTON_DRV_H
#define BUTTON_DRV_H

struct button_operations {
	int count;
	void (*init) (int which);
	int (*read) (int which);
};

void register_button_operations(struct button_operations *opr);
void unregister_button_operations(void);

#endif

board_xxx.c

cpp 复制代码
#include <linux/module.h>
#include <linux/errno.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/sched.h>
#include <linux/slab.h>
#include <linux/fcntl.h>
#include <linux/fs.h>
#include <linux/signal.h>
#include <linux/mutex.h>
#include <linux/mm.h>
#include <linux/timer.h>
#include <linux/wait.h>
#include <linux/skbuff.h>
#include <linux/proc_fs.h>
#include <linux/poll.h>
#include <linux/capi.h>
#include <linux/kernelcapi.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/moduleparam.h>

#include "button_drv.h"

static void board_xxx_button_init_gpio (int which)
{
	printk("%s %s %d, init gpio for button %d\n", __FILE__, __FUNCTION__, __LINE__, which);
}

static int board_xxx_button_read_gpio (int which)
{
	printk("%s %s %d, read gpio for button %d\n", __FILE__, __FUNCTION__, __LINE__, which);
	return 1;
}

static struct button_operations my_buttons_ops ={
	.count = 2,
	.init  = board_xxx_button_init_gpio,
	.read  = board_xxx_button_read_gpio,
};

int board_xxx_button_init(void)
{
	register_button_operations(&my_buttons_ops);
	return 0;
}

void board_xxx_button_exit(void)
{
	unregister_button_operations();
}

module_init(board_xxx_button_init);
module_exit(board_xxx_button_exit);
MODULE_LICENSE("GPL");

board_test.c

cpp 复制代码
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>
#include <string.h>

/*
 * ./button_test /dev/100ask_button0
 *
 */
int main(int argc, char **argv)
{
	int fd;
	char val;
	
	/* 1. 判断参数 */
	if (argc != 2) 
	{
		printf("Usage: %s <dev>\n", argv[0]);
		return -1;
	}

	/* 2. 打开文件 */
	fd = open(argv[1], O_RDWR);
	if (fd == -1)
	{
		printf("can not open file %s\n", argv[1]);
		return -1;
	}

	/* 3. 写文件 */
	read(fd, &val, 1);
	printf("get button : %d\n", val);
	
	close(fd);
	
	return 0;
}

上面4个和之前的都一样,主要不同在board_100ask_stm32mp157.c

主要看 board_100ask_stm32mp157-pro.c。涉及的寄存器挺多,一个一个去执行 ioremap 效率太低。先定义结构体,然后对结构体指针进行 ioremap。对于 GPIO,可以如下定义:

cpp 复制代码
struct stm32mp157_gpio {
  volatile unsigned int MODER;    /*!< GPIO port mode register,               Address offset: 0x00      */
  volatile unsigned int OTYPER;   /*!< GPIO port output type register,        Address offset: 0x04      */
  volatile unsigned int OSPEEDR;  /*!< GPIO port output speed register,       Address offset: 0x08      */
  volatile unsigned int PUPDR;    /*!< GPIO port pull-up/pull-down register,  Address offset: 0x0C      */
  volatile unsigned int IDR;      /*!< GPIO port input data register,         Address offset: 0x10      */
  volatile unsigned int ODR;      /*!< GPIO port output data register,        Address offset: 0x14      */
  volatile unsigned int BSRR;     /*!< GPIO port bit set/reset,               Address offset: 0x18      */
  volatile unsigned int LCKR;     /*!< GPIO port configuration lock register, Address offset: 0x1C      */
  volatile unsigned int AFR[2];   /*!< GPIO alternate function registers,     Address offset: 0x20-0x24 */
} ;

这个顺序是按照偏移量列出的

看一个驱动程序,先看它的入口函数, 下列代码向上层驱动注册一个button_operations 结构体,代码如下。

cpp 复制代码
static struct button_operations my_buttons_ops = {
    .count = 2,
    .init = board_stm32mp157_button_init,
    .read = board_stm32mp157_button_read,
};
// 入口函数
int board_stm32mp157_button_drv_init(void)
{
    register_button_operations(&my_buttons_ops);
    return 0;
}

void board_stm32mp157_button_drv_exit(void)
{
    unregister_button_operations();
}

button_operations 结 构 体 中 有 init 函 数 指 针 , 它 指 向board_stm32mp157_button_init 函数,在里面将会初始化 LED 引脚:使能、设置为 GPIO 模式、设置为输出引脚。代码如下。

值得关注的下列代码中对 ioremap 函数的使用,它们是得到寄存器的虚拟地址,以后使用虚拟地址访问寄存器。

cpp 复制代码
/* RCC_PLL4CR */
static volatile unsigned int *RCC_PLL4CR; 

/* RCC_MP_AHB4ENSETR */
static volatile unsigned int *RCC_MP_AHB4ENSETR;

/* KEY1: PG3, KEY2: PG2 */
static struct stm32mp157_gpio *gpiog;

/* 初始化button, which-哪个button */
static void board_stm32mp157_button_init (int which)
{
    // 没有使能
    if (!RCC_PLL4CR)
    {
        RCC_PLL4CR = ioremap(0x50000000 + 0x894, 4);
        RCC_MP_AHB4ENSETR = ioremap(0x50000000 + 0xA28, 4);

        gpiog = ioremap(0x50008000, sizeof(struct stm32mp157_gpio));
    }

    if (which == 0)
    {
        /* 1. enable PLL4 
         * CG15, b[31:30] = 0b11
         */
		*RCC_PLL4CR |= (1<<0);
		while((*RCC_PLL4CR & (1<<1)) == 0);

		/* 2. enable GPIOG */
		*RCC_MP_AHB4ENSETR |= (1<<6);
		
		/* 3. 设置PG3为GPIO模式, 输入模式 
		 */
		gpiog->MODER &= ~(3<<6);
        
    }
    else if(which == 1)
    {
        /* 1. enable PLL4 
         * CG15, b[31:30] = 0b11
         */
		*RCC_PLL4CR |= (1<<0);
		while((*RCC_PLL4CR & (1<<1)) == 0);

		/* 2. enable GPIOG */
		*RCC_MP_AHB4ENSETR |= (1<<6);
		
		/* 3. 设置PG2为GPIO模式, 输入模式 
		 */
		gpiog->MODER &= ~(3<<4);
    }
    
}

button_operations 结 构 体 中 还 有 有 read 函 数 指 针 , 它 指 向board_stm32mp157_button_read 函数,在里面将会读取并返回按键引脚的电平。代码如下

cpp 复制代码
static int board_stm32mp157_button_read (int which) /* 读button, which-哪个 */
{
    //printk("%s %s line %d, button %d, 0x%x\n", __FILE__, __FUNCTION__, __LINE__, which, *GPIO1_DATAIN);
    if (which == 0)
        return (gpiog->IDR & (1<<3)) ? 1 : 0;
    else
        return (gpiog->IDR & (1<<2)) ? 1 : 0;
}

参考:韦东山嵌入式linux系列-LED驱动程序-CSDN博客

board_100ask_stm32mp157.c

cpp 复制代码
#include <linux/module.h>

#include <linux/fs.h>
#include <linux/io.h>
#include <linux/errno.h>
#include <linux/miscdevice.h>
#include <linux/kernel.h>
#include <linux/major.h>
#include <linux/mutex.h>
#include <linux/proc_fs.h>
#include <linux/seq_file.h>
#include <linux/stat.h>
#include <linux/init.h>
#include <linux/device.h>
#include <linux/tty.h>
#include <linux/kmod.h>
#include <linux/gfp.h>
#include <asm/io.h>

#include "button_drv.h"


/* RCC_PLL4CR */
static volatile unsigned int* RCC_PLL4CR; 

/* RCC_MP_AHB4ENSETR */
static volatile unsigned int* RCC_MP_AHB4ENSETR; 

/* KEY1: PG3, KEY2: PG2 */
static struct stm32mp157_gpio* gpiog;


struct stm32mp157_gpio {
  volatile unsigned int MODER;    /*!< GPIO port mode register,               Address offset: 0x00      */
  volatile unsigned int OTYPER;   /*!< GPIO port output type register,        Address offset: 0x04      */
  volatile unsigned int OSPEEDR;  /*!< GPIO port output speed register,       Address offset: 0x08      */
  volatile unsigned int PUPDR;    /*!< GPIO port pull-up/pull-down register,  Address offset: 0x0C      */
  volatile unsigned int IDR;      /*!< GPIO port input data register,         Address offset: 0x10      */
  volatile unsigned int ODR;      /*!< GPIO port output data register,        Address offset: 0x14      */
  volatile unsigned int BSRR;     /*!< GPIO port bit set/reset,               Address offset: 0x18      */
  volatile unsigned int LCKR;     /*!< GPIO port configuration lock register, Address offset: 0x1C      */
  volatile unsigned int AFR[2];   /*!< GPIO alternate function registers,     Address offset: 0x20-0x24 */
};





/* 初始化button, which-哪个button */      
static void board_stm32mp157_button_init (int which) 
{
	if (!RCC_PLL4CR)
    {
        RCC_PLL4CR = ioremap(0x50000000 + 0x894, 4);
        RCC_MP_AHB4ENSETR = ioremap(0x50000000 + 0xA28, 4);

        gpiog = ioremap(0x50008000, sizeof(struct stm32mp157_gpio));
    }

    if (which == 0)
    {
        /* 1. enable PLL4 
         * CG15, b[31:30] = 0b11
         */
		*RCC_PLL4CR |= (1<<0);
		while((*RCC_PLL4CR & (1<<1)) == 0);

		/* 2. enable GPIOG */
		*RCC_MP_AHB4ENSETR |= (1<<6);
		
		/* 3. 设置PG3为GPIO模式, 输入模式 
		 */
		gpiog->MODER &= ~(3<<6);
        
    }
    else if(which == 1)
    {
        /* 1. enable PLL4 
         * CG15, b[31:30] = 0b11
         */
		*RCC_PLL4CR |= (1<<0);
		while((*RCC_PLL4CR & (1<<1)) == 0);

		/* 2. enable GPIOG */
		*RCC_MP_AHB4ENSETR |= (1<<6);
		
		/* 3. 设置PG2为GPIO模式, 输入模式 
		 */
		gpiog->MODER &= ~(3<<4);
    }
}


/* 读button, which-哪个 */
static int board_stm32mp157_button_read (int which)
{
	//printk("%s %s line %d, button %d, 0x%x\n", __FILE__, __FUNCTION__, __LINE__, which, *GPIO1_DATAIN);
    if (which == 0)
    {
		return (gpiog->IDR & (1<<3)) ? 1 : 0;
	}
    else
    {
		return (gpiog->IDR & (1<<2)) ? 1 : 0;
	}
}


static struct button_operations my_buttons_ops = {
    .count = 2,
    .init = board_stm32mp157_button_init,
    .read = board_stm32mp157_button_read,
};

int board_stm32mp157_button_drv_init(void)
{
    register_button_operations(&my_buttons_ops);
    return 0;
}

void board_stm32mp157_button_drv_exit(void)
{
    unregister_button_operations();
}

module_init(board_stm32mp157_button_drv_init);
module_exit(board_stm32mp157_button_drv_exit);

MODULE_LICENSE("GPL");

编译

4 测试

在开发板挂载 Ubuntu 的NFS目录

bash 复制代码
mount -t nfs -o nolock,vers=3 192.168.5.11:/home/book/nfs_rootfs/ /mnt

将ko文件和测试代码拷贝到挂载目录,安装驱动

bash 复制代码
insmod button_drv.ko
insmod board_100ask_stm32mp157.ko

执行测试程序观察它的返回值(执行测试程序的同时操作按键):

bash 复制代码
./button_test /dev/winter_button@0
./button_test /dev/winter_button@1

执行程序的同时,按下按键,输出是0

相关推荐
7yewh5 小时前
Linux驱动开发 IIC I2C驱动 编写APP访问EEPROM AT24C02
linux·arm开发·驱动开发·嵌入式硬件·嵌入式
上海易硅智能科技局有限公司6 小时前
AG32 MCU 的电机控制方案
单片机·嵌入式硬件
程序员JerrySUN6 小时前
Yocto 项目 - 共享状态缓存 (Shared State Cache) 机制
linux·嵌入式硬件·物联网·缓存·系统架构
嵌入式小强工作室8 小时前
stm32能跑人工智能么
人工智能·stm32·嵌入式硬件
MikelSun8 小时前
电压控制环与电流控制环
单片机·嵌入式硬件·物联网
陌夏微秋9 小时前
STM32单片机芯片与内部45 UART 不定长度接收 标志位结束 定时器超时 串口空闲中断
stm32·单片机·嵌入式硬件·信息与通信·智能硬件
挥剑决浮云 -10 小时前
STM32学习之 按键/光敏电阻 控制 LED/蜂鸣器
c语言·经验分享·stm32·单片机·嵌入式硬件·学习
Whappy00111 小时前
第13部分 1.STM32之PWR电源控制-----4个实验
stm32·单片机·嵌入式硬件
冲,干,闯12 小时前
单片机里不想阻塞系统的延时
单片机·嵌入式硬件
小菜鸟学代码··12 小时前
STM32中断详解
stm32·单片机·嵌入式硬件