前缀表达式
从右至左扫描表达式,遇到数字时,将数字压入堆栈,遇到运算符时,弹出栈顶的两个数,用运算符对它们做相应的计算(栈顶元素和次顶元素),并将结果入栈;重复上述过程直到表达式最左端,最后运算得出的值为表达式的结果
例如
(3+4)*5-6 对应的前缀表达式就是 - * + 3 4 5 6,针对前缀表达式求值步骤如下:
1.从右至左扫描,将 6、5、4、3 压入堆栈
2.遇到 + 运算符,因此弹出 3 和 4 (3 为栈顶元素,4 为栈底元素),计算出 3 + 4 = 7,再将 7 入栈
3.接下来是 * 运算符,因此弹出 7 和 5,计算出 7 * 5 = 35,将 35 入栈
4.最后是 - 运算符,计算出 35 - 6 = 29,由此得出最终结果
中缀表达式
1.中缀表达式就是最常见的运算表达式,如 (3 + 4) * 5 - 6
2.中缀表达式的求值是我们人最熟悉的,但是对于计算机来说却不好操作,因此,在计算结果时,往往会将中缀表达式转成其他表达式来操作(一般转成后缀表达式)
后缀表达式(逆波兰表达式)
从左至右扫描表达式,遇到数字时,将数字压入堆栈,遇到运算符时,弹出栈顶的两个数,用运算符对他们做相应的计算(栈顶元素和次顶元素),并将结果入栈;重复上述过程直到表达式最右端,最后运算得出的值即为表达式的结果
例如
(3 + 4) * 5 - 6 的后缀表达式就是 3 4 + 5 * 6 -,后缀表达式求值步骤如下:
1.从左至右扫描,将 3 和 4 压入堆栈
2.遇到 + 运算符,因此弹出 4 和 3 (4 为栈顶元素,3 为次顶元素),计算出 3 + 4 = 7,再将 7 入栈
3.将 5 入栈
4.接下来是 * 运算符,因此弹出 5 和 7,计算出 5 * 7 = 35,将 35 入栈
5.将 6 入栈
6.最后是 - 运算符,计算出 35 - 6 = 29,由此得出最终结果