Leetcode 3234. Count the Number of Substrings With Dominant Ones

  • [Leetcode 3234. Count the Number of Substrings With Dominant Ones](#Leetcode 3234. Count the Number of Substrings With Dominant Ones)
    • [1. 解题思路](#1. 解题思路)
    • [2. 代码实现](#2. 代码实现)

1. 解题思路

这一题要求被1 dominate的substring的个数,整体上来说是一个 O ( N 2 ) O(N^2) O(N2)算法复杂度的东西,还挺麻烦的,所幸题中限制了1的个数需要多于0的平方数,因此我们可以反其道而行,依次考察所有存在 i i i个零的substring,看看其中有多少个满足1的个数不少于 i 2 i^2 i2,将其累加即为我们最终的答案,如此一来,整体的算法复杂度可以优化至 O ( N 3 / 2 ) O(N^{3/2}) O(N3/2),勉强可以接受吧。

于是,我们只需要给出所有0所在的位置,然后考察所有恰好存在 i i i个0的区间,然后看看有多少个满足至少存在 i 2 i^2 i2个1。假设对应的窗口之间有 m m m个1,然后区间左右分别有 l , r l,r l,r个1,此时,我们不难通过容斥原理得到对应的数学解答如下:

N = ( ∑ i = 1 l + r − ( i 2 − m ) + 1 i ) − ( ∑ i = 1 l − ( i 2 − m ) + 1 i ) + m a x ( 0 , l − ( i 2 − m ) + 1 ) − ( ∑ i = 1 r − ( i 2 − m ) + 1 i ) + m a x ( 0 , r − ( i 2 − m ) + 1 ) N = (\sum\limits_{i=1}^{l+r-(i^2-m)+1} i) - (\sum\limits_{i=1}^{l-(i^2-m)+1} i) + \mathop{max}(0, l-(i^2-m)+1) - (\sum\limits_{i=1}^{r-(i^2-m)+1} i) + \mathop{max}(0, r-(i^2-m)+1) N=(i=1∑l+r−(i2−m)+1i)−(i=1∑l−(i2−m)+1i)+max(0,l−(i2−m)+1)−(i=1∑r−(i2−m)+1i)+max(0,r−(i2−m)+1)

而等差数列的求解又可以直接写作 ∑ i = 1 n = n ( n + 1 ) 2 \sum\limits_{i=1}^n = \frac{n(n+1)}{2} i=1∑n=2n(n+1),因此,我们不难在 O ( 1 ) O(1) O(1)的时间复杂度范围内直接获得对应的答案。

综上,总的时间复杂度就是 O ( N 3 / 2 ) O(N^{3/2}) O(N3/2),不算很好,但是勉强够用吧......

2. 代码实现

给出python代码实现如下:

python 复制代码
class Solution:
    def numberOfSubstrings(self, s: str) -> int:
        n = len(s)
        zeros = [i for i, ch in enumerate(s) if ch == "0"]
        if len(zeros) <= 1:
            return n * (n+1) // 2 - len(zeros)
        
        m = len(zeros)
        ans = (n-1 - zeros[-1]) * (n - zeros[-1]) // 2
        for i in range(m):
            if i == 0:
                one = zeros[i]
            else:
                one = zeros[i] - zeros[i-1]-1
            ans += one*(one+1) // 2
        for i in range(1, m+1):
            if i*i+i > n:
                break
            for j in range(m+1-i):
                l, r = zeros[j], zeros[i+j-1]
                mid = r-l+1-i
                l1 = l if j == 0 else zeros[j] - zeros[j-1]-1
                r1 = n-1-r if i+j-1 == m-1 else zeros[i+j] - zeros[i+j-1]-1
                if mid >= i*i:
                    need = 0
                    cnt = (l1+1) * (r1+1)
                elif mid + l1 + r1 >= i*i:
                    need = i*i-mid
                    cnt = (l1+r1-need+1) * (l1+r1-need+2) // 2
                    if l1 >= need:
                        cnt = cnt - ((l1-need+1) * (l1-need+2) // 2) + (l1-need+1)
                    if r1 >= need:
                        cnt = cnt - ((r1-need+1) * (r1-need+2) // 2) + (r1-need+1)
                else:
                    need = 0
                    cnt = 0
                ans += cnt
        return ans      

提交代码评测得到:耗时7478ms,占用内存18.4MB。

相关推荐
Tisfy2 天前
LeetCode 2266.统计打字方案数:排列组合
数学·算法·leetcode·动态规划·题解·排列组合
窗户9 天前
排列和组合的实现
排列组合·函数式·haskell·scheme
Espresso Macchiato10 天前
Leetcode 3418. Maximum Amount of Money Robot Can Earn
leetcode·动态规划·leetcode medium·leetcode 3418·leetcode周赛432
Espresso Macchiato1 个月前
Leetcode 3388. Count Beautiful Splits in an Array
leetcode·z算法·leetcode medium·leetcode周赛428·leetcode 3388
Espresso Macchiato3 个月前
Leetcode 3316. Find Maximum Removals From Source String
leetcode·动态规划·leetcode medium·leetcode 3316·leetcode双周赛141
Espresso Macchiato4 个月前
Leetcode 3306. Count of Substrings Containing Every Vowel and K Consonants II
leetcode·滑动窗口·leetcode medium·leetcode 3306·leetcode周赛417
Espresso Macchiato4 个月前
Leetcode 3301. Maximize the Total Height of Unique Towers
leetcode·leetcode medium·leetcode双周赛140·leetcode 3301
Espresso Macchiato4 个月前
Leetcode 3302. Find the Lexicographically Smallest Valid Sequence
leetcode medium·lcs·leetcode 3302·leetcode双周赛140·最大公共子序列
Espresso Macchiato5 个月前
Leetcode 3255. Find the Power of K-Size Subarrays II
leetcode·leetcode medium·leetcode 3255·leetcode 3254·leetcode周赛137
Espresso Macchiato6 个月前
Leetcode 3240. Minimum Number of Flips to Make Binary Grid Palindromic II
leetcode·leetcode medium·回文·leetcode 3240·leetcode双周赛136