K210视觉识别模块学习笔记8:Mx_yolo3本地模型训练环境搭建_部署模型到亚博canmv(失败)

今日开始学习K210视觉识别模块: 本地模型训练环境搭建

亚博智能 K210视觉识别模块......

固件库: canmv_yahboom_v2.1.1.bin

本地训练 Mx_yolo3

这里就简单地提示一下下载安装哪些软件,然后主要是使用Mx_yolo3****进行本地训练模型的......

本文不用浪费时间看了! 这次对本地训练出的模型的部署是失败的

不知道为何,也许是亚博智能固件库对模型的处理导入函数写的与Mx_yolo3生成的模型不适配???

文章提供测试代码讲解、完整代码贴出、测试效果图、完整工程下载

目录

配置要求:

下载安装的软件:

Mx_yolov3本地训练自己的模型

采集图片数据集:

标注处理数据集:

训练模型:

编程导入模型

源代码如下:

修改步骤如下:

修改后的代码如下:

测试识别效果:

网上查阅资料贴出:


配置要求:

win10电脑,最好有显卡GPU,我的配置如下:

下载安装的软件:

这里制作提示要安装哪些软件环境啥的,具体细节省略,下方网上查阅资料标出的文章有具体细节
Mx_yolov3的安装并使用GPU训练_mx yolov3 3.0下载-CSDN博客
1、Mx_yolov3

2.CUDA和CUDNN

3、Python3.7.3

Mx_yolov3本地训练自己的模型

这里详细讲一下如何使用 Mx_yolov3本地训练自己的模型

就以识别鼠标为例,从获取数据集、标注处理数据集、训练模型、导入模型为顺序讲·

采集图片数据集:

这里说明必须使用K210来拍摄采集数据图片,并尽可能多的图片

这次我对着鼠标拍摄了58张不同角度的图片,实际为了准确率,这点数据集明显是不够的,

实际最好需要几百张

标注处理数据集:

打开文件夹可以打开采集好的所有数据图片(放在一个文件夹中)

英文输入法下,按'W'可以与鼠标配合开始绘制标注框图

选择保存文件夹可以将标注好的xml文件选择地方保存好
这里我将所有图片放在了imagine文件夹中,将标注好的xml文件放在xml文件夹:

训练模型:

将训练图片与标注的俩个文件夹地址选择好,填好参数啥的就能训练了:

等待训练完成后就能导出模型了:

编程导入模型

解压导出的模型压缩包后,只有一个komdel、label是我们需要用到的:

先将mx.kmodel文件复制到SD卡

因为固件库的原因,它的boot代码我们无法使用,但需要打开boot来复制它的anchor内容:

这里我们之前在mixhub网站训练模型的代码来导入使用它的模型:

源代码如下:

python 复制代码
import sensor, image, time, lcd, gc, cmath
from maix import KPU

lcd.init()                          # Init lcd display
lcd.clear(lcd.RED)                  # Clear lcd screen.

# sensor.reset(dual_buff=True)      # improve fps
sensor.reset()                      # Reset and initialize the sensor.
sensor.set_pixformat(sensor.RGB565) # Set pixel format to RGB565 (or GRAYSCALE)
sensor.set_framesize(sensor.QVGA)   # Set frame size to QVGA (320x240)
#sensor.set_vflip(True)              # 翻转摄像头
#sensor.set_hmirror(True)            # 镜像摄像头
sensor.skip_frames(time = 1000)     # Wait for settings take effect.
clock = time.clock()                # Create a clock object to track the FPS.

print("ready load model")

labels = ["six"] #类名称,按照label.txt顺序填写
anchor = (1.06, 1.22, 1.36, 1.56, 1.75, 2.03, 2.41, 2.88, 3.58, 4.45) # anchors,使用anchor.txt中第二行的值

kpu = KPU()
# 从sd或flash加载模型
kpu.load_kmodel('/sd/det.kmodel')
#kpu.load_kmodel(0x300000, 584744)
kpu.init_yolo2(anchor, anchor_num=(int)(len(anchor)/2), img_w=320, img_h=240, net_w=320 , net_h=240 ,layer_w=10 ,layer_h=8, threshold=0.6, nms_value=0.3, classes=len(labels))

while(True):
    gc.collect()

    clock.tick()
    img = sensor.snapshot()

    kpu.run_with_output(img)
    dect = kpu.regionlayer_yolo2()

    fps = clock.fps()

    if len(dect) > 0:
        for l in dect :
            a = img.draw_rectangle(l[0],l[1],l[2],l[3],color=(0,255,0))

            info = "%s %.3f" % (labels[l[4]], l[5])
            a = img.draw_string(l[0],l[1],info,color=(255,0,0),scale=2.0)
            print(info)
            del info

    a = img.draw_string(0, 0, "%2.1ffps" %(fps),color=(0,60,255),scale=2.0)
    lcd.display(img)

修改步骤如下:

根据上面提供的源代码进行修改:

先修改导入模型的名称为刚才训练好的kmodel的名称:

在复制软件训练好的boot.py文件中的anchor数据到代码中

最后复制label的类名称到代码中:

修改后的代码如下:

python 复制代码
import sensor, image, time, lcd, gc, cmath
from maix import KPU

lcd.init()                          # Init lcd display
lcd.clear(lcd.RED)                  # Clear lcd screen.

# sensor.reset(dual_buff=True)      # improve fps
sensor.reset()                      # Reset and initialize the sensor.
sensor.set_pixformat(sensor.RGB565) # Set pixel format to RGB565 (or GRAYSCALE)
sensor.set_framesize(sensor.QVGA)   # Set frame size to QVGA (320x240)
#sensor.set_vflip(True)              # 翻转摄像头
#sensor.set_hmirror(True)            # 镜像摄像头
sensor.skip_frames(time = 1000)     # Wait for settings take effect.
clock = time.clock()                # Create a clock object to track the FPS.

print("ready load model")

labels = ["mouse"] #类名称,按照label.txt顺序填写
anchor = (2.71875, 3.578124999999999, 3.1875, 5.125, 2.46875, 3.125, 2.90625, 3.96875, 2.28125, 4.40625) # anchors,使用anchor.txt中第二行的值

kpu = KPU()
# 从sd或flash加载模型
kpu.load_kmodel('/sd/mx.kmodel')
#kpu.load_kmodel(0x300000, 584744)
kpu.init_yolo2(anchor, anchor_num=(int)(len(anchor)/2), img_w=320, img_h=240, net_w=320 , net_h=240 ,layer_w=10 ,layer_h=8, threshold=0.4, nms_value=0.3, classes=len(labels))


while(True):
    gc.collect()

    clock.tick()
    img = sensor.snapshot()

    kpu.run_with_output(img)
    dect = kpu.regionlayer_yolo2()

    fps = clock.fps()

    if len(dect) > 0:
        for l in dect :
            if l[5]>0.7:
                a = img.draw_rectangle(l[0],l[1],l[2],l[3],color=(0,255,0))
    
                info = "%s %.3f" % (labels[l[4]], l[5])
                a = img.draw_string(l[0],l[1],info,color=(255,0,0),scale=2.0)
                print(info)
                del info

    a = img.draw_string(0, 0, "%2.1ffps" %(fps),color=(0,60,255),scale=2.0)
    lcd.display(img)

测试识别效果:

惨不忍睹的识别效果....不知道是亚博智能有关anchor以及yolov固件库不兼容问题还是什么..

将限制不限制置信度L[5]>0.7的语句删除掉,它甚至能全屏都是mouse:

网上查阅资料贴出:

关于Mx_yolo3的模型训练详细教程[保姆式教程] DF创客社区
Mx-yolov3+Maixpy+ K210进行本地模型训练和目标检测-CSDN博客
k210部署自行训练的口罩识别模型_k210固件和亚博固件-CSDN博客

相关推荐
B1nna3 小时前
Redis学习(三)缓存
redis·学习·缓存
_im.m.z3 小时前
【设计模式学习笔记】1. 设计模式概述
笔记·学习·设计模式
胡西风_foxww4 小时前
【ES6复习笔记】迭代器(10)
前端·笔记·迭代器·es6·iterator
最好Tony4 小时前
深度学习blog-Transformer-注意力机制和编码器解码器
人工智能·深度学习·机器学习·计算机视觉·自然语言处理·chatgpt
左漫在成长5 小时前
王佩丰24节Excel学习笔记——第十九讲:Indirect函数
笔记·学习·excel
四口鲸鱼爱吃盐6 小时前
Pytorch | 利用SMI-FGRM针对CIFAR10上的ResNet分类器进行对抗攻击
人工智能·pytorch·python·深度学习·机器学习·计算机视觉
纪伊路上盛名在6 小时前
Max AI prompt1
笔记·学习·学习方法
Suwg2096 小时前
【MySQL】踩坑笔记——保存带有换行符等特殊字符的数据,需要进行转义保存
数据库·笔记·mysql
2401_857610037 小时前
中文学习系统:成本效益分析与系统优化
java·数据库·学习·架构
条哥的高频放大器7 小时前
μC/OS-Ⅱ源码学习(8)---同步与延时
学习