调用百度的大模型API接口实现AI对话!手把手教程!

本文介绍如何使用百度的大模型API接口实现一个AI对话项目

[1 注册百度云](#1 注册百度云)

[2 获取API接口](#2 获取API接口)

[3 配置环境](#3 配置环境)

[4 代码编写与运行](#4 代码编写与运行)

[5 chat models](#5 chat models)


1 注册百度云

搜索百度云,打开官网注册,充值一点点大米(收费很低,大概生成几个句子花费一毛钱)

注册之后一定要完成个人认证,不然无法使用。

2 获取API接口

完成注册与认证之后,打开千帆大模型平台,点开引用接入,应用名称起个名字,描述随便打几个字就行。

获取API Key 和Secret Key(注意保密)

完成之后,大功告成。

3 配置环境

安装Anaconda和PyCharm

Anaconda官网:Download Anaconda Distribution | Anaconda

PyCharm官网:PyCharm:适用于数据科学和 Web 开发的 Python IDE (jetbrains.com)

PyCharm建议下载专业版的,上网找个激活码就ok。

安装过程很简单,网上教程一大堆,随便找个一步步来就可以。就不再赘述。

创建虚拟环境

安装好Anaconda之后,在开始菜单栏会有文件夹,打开Anaconda Prompt(记住不能错,必须是Anaconda Prompt)

创建一个大模型的环境,然后下载库。依次运行以下代码。

conda create -n llm python=3.10
#创建llm

conda activate llm
#激活llm

pip install langchain
pip install qianfan

#下载

如果在后续的运行中出现缺失包的报错,那就缺的包pip install 下载一下就行啦。

4 代码编写与运行

打开pycharm,新建一个py文档,输入如下代码。

#1.导入包
import os
#QianfanLLMEndpoint:通常提供较为简单的文本补全接口,可能不包含复杂的对话管理和上下文理解能力。
from langchain_community.llms import QianfanLLMEndpoint

#2.设置千帆的API-KEY和SERECT-KEY
os.environ['QIANFAN_AK']='cfgxxxxxxxxxxx9nu7'
os.environ['QIANFAN_SK']='Txxxxxxxxxxxxxxxxxxxxxxxx'

#3.实例化模型

llm=QianfanLLMEndpoint(model='ChatGLM2-6B-32K')
#可以更换模型,在langchain官方文档里面

#4.输入问题,打印结果
res =llm('llm大模型是什么?')
print(res)

通过调用千帆(Qianfan)的API来实现文本补全功能。代码逐行解释:

  1. 导入Python的os模块,这个模块提供了许多与操作系统交互的功能,比如设置环境变量。
  2. 导入langchain_community.llms模块中的QianfanLLMEndpoint类,这个类用于创建一个与千帆大模型交互的接口。
  3. 设置环境变量QIANFAN_AKQIANFAN_SK,这两个变量分别代表千帆API的Access Key和Secret Key。这些密钥是API调用的身份验证信息,需要从千帆平台获取。
  4. 实例化QianfanLLMEndpoint类,创建一个名为llm的对象。这里指定了使用的模型为ChatGLM2-6B-32K,这个参数可以根据需要更换为其他模型。
  5. 使用llm对象调用ChatGLM2-6B-32K模型,传入一个问题'llm大模型是什么?',然后打印出模型返回的结果。

如图所示:

运行代码,查看结果。

完美生成!

如果想要更换大模型,直接在参数里面指明大模型的名字即可。

llm=QianfanLLMEndpoint(model='ChatGLM2-6B-32K')
#可以更换模型,在langchain官方文档里面

官方文档地址:LLMs | 🦜️🔗 LangChain

5 chat models

如果想要完成对话任务,运行以下代码。

#1.导入包
import os
from langchain_community.chat_models import QianfanChatEndpoint
from langchain_core.language_models.chat_models import HumanMessage

#2.设置千帆的API-KEY和SERECT-KEY
os.environ['QIANFAN_AK']='cxxxxxxxxxxxxxxxxxxxxx'
os.environ['QIANFAN_SK']='TxxxxxxxxxxxxxxxxxxxxxxxxI'

#3.实例化模型
chat = QianfanChatEndpoint(streaming=True)

messages = [HumanMessage(content="给我写一首诗")]
res = chat(messages)
print(res)
相关推荐
正义的彬彬侠3 分钟前
《XGBoost算法的原理推导》12-14决策树复杂度的正则化项 公式解析
人工智能·决策树·机器学习·集成学习·boosting·xgboost
Debroon12 分钟前
RuleAlign 规则对齐框架:将医生的诊断规则形式化并注入模型,无需额外人工标注的自动对齐方法
人工智能
羊小猪~~19 分钟前
神经网络基础--什么是正向传播??什么是方向传播??
人工智能·pytorch·python·深度学习·神经网络·算法·机器学习
AI小杨20 分钟前
【车道线检测】一、传统车道线检测:基于霍夫变换的车道线检测史诗级详细教程
人工智能·opencv·计算机视觉·霍夫变换·车道线检测
晨曦_子画25 分钟前
编程语言之战:AI 之后的 Kotlin 与 Java
android·java·开发语言·人工智能·kotlin
道可云26 分钟前
道可云人工智能&元宇宙每日资讯|2024国际虚拟现实创新大会将在青岛举办
大数据·人工智能·3d·机器人·ar·vr
Yawesh_best33 分钟前
思源笔记轻松连接本地Ollama大语言模型,开启AI写作新体验!
笔记·语言模型·ai写作
人工智能培训咨询叶梓36 分钟前
探索开放资源上指令微调语言模型的现状
人工智能·语言模型·自然语言处理·性能优化·调优·大模型微调·指令微调
zzZ_CMing36 分钟前
大语言模型训练的全过程:预训练、微调、RLHF
人工智能·自然语言处理·aigc
newxtc37 分钟前
【旷视科技-注册/登录安全分析报告】
人工智能·科技·安全·ddddocr