deploy local llm ragflow

CPU >= 4 cores

RAM >= 16 GB

Disk >= 50 GB

Docker >= 24.0.0 & Docker Compose >= v2.26.1

下载docker:

官方下载方式:https://docs.docker.com/desktop/install/ubuntu/

其中 DEB package需要手动下载并传输到服务器

国内下载方式:

https://blog.csdn.net/u011278722/article/details/137673353

Ensure vm.max_map_count >= 262144:

check:

$ sysctl vm.max_map_count

Reset vm.max_map_count to a value at least 262144 if it is not:

$ sudo sysctl -w vm.max_map_count=262144

复制代码
This change will be reset after a system reboot. To ensure your change remains permanent, add or 
        update the vm.max_map_count value in /etc/sysctl.conf accordingly:
$ vm.max_map_count=262144

Clone the repo:

$ git clone https://github.com/infiniflow/ragflow.git

该步骤需要手动下载并传输,国内无法下载

Build the pre-built Docker images and start up the server:

$ cd ragflow/docker

$ chmod +x ./entrypoint.sh

$ docker compose up -d

这一步也需要手动传输或直接用用源代码build(见最后)

Check the server status after having the server up and running:

$ docker logs -f ragflow-server

The following output confirms a successful launch of the system:


/ __ \ ____ _ ____ _ / // / _ __

/ // // __ // __ // / / // __ | | /| / /

/ , // // // / / // / / // // /| |/ |/ /
/
/ || _ ,/ _ , /// // _
/ | /| _/

/____/

In your web browser, enter the IP address of your server and log in to RAGFlow.

With the default settings, you only need to enter http://IP_OF_YOUR_MACHINE (sans port number) as the default HTTP serving port 80 can be omitted when using the default configurations.

In service_conf.yaml, select the desired LLM factory in user_default_llm and update the API_KEY field with the corresponding API key.

See llm_api_key_setup for more information.

Rebuild:

To build the Docker images from source:

$ git clone https://github.com/infiniflow/ragflow.git

$ cd ragflow/

$ docker build -t infiniflow/ragflow:dev .

$ cd ragflow/docker

$ chmod +x ./entrypoint.sh

$ docker compose up -d

卸载原有cuda和驱动

https://blog.alumik.cn/posts/90/#:\~:text=Use the following command to uninstall a Toolkit,remove --purge '^nvidia-.*' sudo apt-get remove --purge '^libnvidia-.*'

CUDA 和 Nvdia driver安装:

https://blog.hellowood.dev/posts/ubuntu-22-安装-nvdia-显卡驱动和-cuda/

下载Vllm

https://qwen.readthedocs.io/zh-cn/latest/deployment/vllm.html

国内下载model: /Qwen2-7B-Instruct方法:

pip install modelscope

from modelscope import snapshot_download

model_dir = snapshot_download('qwen/Qwen2-7B-Instruct', cache_dir='/home/llmlocal/qwen/qwen/')

运行llm服务器

python -m vllm.entrypoints.openai.api_server --model /home/llmlocal/qwen/qwen/Qwen2-7B-Instruct --host 0.0.0.0 --port 8000

测试:

curl http://localhost:8000/v1/chat/completions -H "Content-Type: application/json" -d '{

"model": "/home/llmlocal/qwen/qwen/Qwen2-7B-Instruct",

"messages": [

{"role": "system", "content": "You are a helpful assistant."},

{"role": "user", "content": "Tell me something about large language models."}

],

"temperature": 0.7,

"top_p": 0.8,

"repetition_penalty": 1.05,

"max_tokens": 512

}'

更改ragflow的MODEL_NAME = "/home/llmlocal/qwen/qwen/Qwen2-7B-Instruct" 路径在rag里的chat_model

相关推荐
帮帮志13 分钟前
Python代码list列表的使用和常用方法及增删改查
开发语言·python
小洛~·~1 小时前
《深度学习入门:基于Python的理论与实现》第三章神经网络
python·深度学习·神经网络
Jackilina_Stone4 小时前
【模型量化】GPTQ 与 AutoGPTQ
人工智能·python·gptq
橙色小博5 小时前
PyTorch中的各种损失函数的详细解析与通俗理解!
人工智能·pytorch·python·深度学习·神经网络·机器学习
小森77676 小时前
(三)机器学习---线性回归及其Python实现
人工智能·python·算法·机器学习·回归·线性回归
-XWB-6 小时前
【LLM】使用MySQL MCP Server让大模型轻松操作本地数据库
人工智能·python·自然语言处理
PacosonSWJTU7 小时前
python基础-13-处理excel电子表格
开发语言·python·excel
小军要奋进8 小时前
httpx模块的使用
笔记·爬虫·python·学习·httpx
Johnny_Cheung8 小时前
字符串、列表、元组、字典
开发语言·python
独行soc8 小时前
2025年渗透测试面试题总结- 某四字大厂面试复盘扩展 一面(题目+回答)
java·数据库·python·安全·面试·职场和发展·汽车