昇思25天学习打卡营第13天 |昇思MindSpore 基于 MindSpore 实现 BERT 对话情绪识别

一、模型简介

BERT 是 Google 于 2018 年末开发并发布的一种新型语言模型,在众多自然语言处理任务中发挥重要作用。其创新点在于 pre-train 方法,即采用了 Masked Language Model 和 Next Sentence Prediction 两种方法分别捕捉词语和句子级别的表征。

二、调用库的功能介绍

  1. mindspore:提供了深度学习框架的核心功能,用于构建、训练和推理模型。
  2. mindspore.dataset:包含数据处理相关的模块,如文本处理、数据集生成和转换等。
  3. mindnlp._legacy.engine:提供了训练和评估模型的相关类和回调函数。
  4. mindnlp._legacy.metrics:用于定义和计算模型评估指标。

三、函数介绍

1. SentimentDataset

  • 参数path,表示数据集文件的路径。
  • 功能:读取指定路径的数据集文件,提取其中的标签和文本数据。
  • 例句
python 复制代码
sentiment_dataset = SentimentDataset("data/train.tsv")

2. process_dataset 函数

  • 参数
    • source:数据集的来源。
    • tokenizer:用于文本分词的工具。
    • max_seq_len(默认值 64):序列的最大长度。
    • batch_size(默认值 32):批次大小。
    • shuffle(默认值 True):是否打乱数据集。
  • 功能:对数据集进行加载、转换、分词和批处理等预处理操作。
  • 例句
python 复制代码
dataset_train = process_dataset(SentimentDataset("data/train.tsv"), tokenizer)

3. BertForSequenceClassification.from_pretrained 函数

  • 参数
    • 'bert-base-chinese':预训练模型的名称。
    • num_labels=3:分类的类别数量。
  • 功能:从预训练模型加载并构建用于序列分类的 BERT 模型。
  • 例句
python 复制代码
model = BertForSequenceClassification.from_pretrained('bert-base-chinese', num_labels=3)

4. auto_mixed_precision 函数

  • 参数
    • model:要进行混合精度处理的模型。
    • 'O1':混合精度的模式。
  • 功能:对模型进行自动混合精度操作,以提高训练速度。
  • 例句
python 复制代码
model = auto_mixed_precision(model, 'O1')

5. CheckpointCallback

  • 参数
    • save_path='checkpoint':保存检查点的路径。
    • ckpt_name='bert_emotect':检查点的名称。
    • epochs=1:保存的间隔周期。
    • keep_checkpoint_max=2:保留的最大检查点数量。
  • 功能:在训练过程中按照指定的间隔和策略保存模型检查点。
  • 例句
python 复制代码
ckpoint_cb = CheckpointCallback(save_path='checkpoint', ckpt_name='bert_emotect', epochs=1, keep_checkpoint_max=2)

6. BestModelCallback

  • 参数
    • save_path='checkpoint':保存最佳模型的路径。
    • ckpt_name='bert_emotect_best':最佳模型的名称。
    • auto_load=True:是否自动加载最佳模型。
  • 功能:在训练过程中保存表现最佳的模型。
  • 例句
python 复制代码
best_model_cb = BestModelCallback(save_path='checkpoint', ckpt_name='bert_emotect_best', auto_load=True)

四、数据集

  1. 提供了一份已标注、经过分词预处理的机器人聊天数据集,来自百度飞桨团队。
  2. 数据由两列组成,以制表符分隔,第一列是情绪分类类别(0 表示消极,1 表示中性,2 表示积极),第二列是以空格分词的中文文本。

五、数据加载和数据预处理

  1. 新建 process_dataset 函数用于数据加载和预处理。
    • 包括数据格式转换、Tokenize 处理和 pad 操作。
    • 针对昇腾 NPU 环境,采用静态 Shape 处理。
  2. 加载预训练的 BertTokenizer ,并对训练集、验证集和测试集进行处理。

六、模型构建

  1. 通过 BertForSequenceClassification 构建情感分类的 BERT 模型。
  2. 加载预训练权重,设置情感三分类的超参数自动构建模型。
  3. 采用自动混合精度操作,实例化优化器和评价指标。
  4. 设置模型训练的权重保存策略,构建训练器并开始训练。

七、模型验证

使用验证数据集对训练好的模型进行验证,评价指标为准确率。

八、模型推理

  1. 遍历推理数据集,展示推理结果与标签。
  2. 自定义推理数据,展示模型泛化能力。
相关推荐
imbackneverdie1 分钟前
国自然申报技术路线图模板
图像处理·人工智能·信息可视化·数据可视化·学术·国自然·国家自然科学基金
stark张宇6 分钟前
别掉队!系统掌握 LLM 应用开发,这可能是你今年最值得投入的学习方向
人工智能·llm·agent
IT_陈寒11 分钟前
Redis性能翻倍的5个冷门技巧,90%开发者都不知道的深度优化方案
前端·人工智能·后端
小脉传媒GEO16 分钟前
GEO优化数据统计系统DeepAnaX系统详细介绍:您的AI生态数据可视化与智能决策中枢
人工智能·信息可视化
roman_日积跬步-终至千里18 分钟前
【人工智能原理(1)】要点总结:从搜索、学习到推理的智能之路
人工智能·学习
云闲不收19 分钟前
AI编程系列——mcp与skill
人工智能·ai编程
aitoolhub21 分钟前
人脸识别技术:从传统方法到深度学习的演进路径
人工智能·深度学习
Aaron158824 分钟前
RFSOC+VU13P在无线信道模拟中的技术应用分析
数据结构·人工智能·算法·fpga开发·硬件架构·硬件工程·射频工程
高洁0128 分钟前
一文了解图神经网络
人工智能·python·深度学习·机器学习·transformer
数据猿29 分钟前
【金猿CIO展】莱商银行信息科技部总经理张勇:AI Infra与Data Agent驱动金融数据价值新十年
人工智能·金融