对于扩散模型的理解

PS:我跟扩散模型打交道比较久了,下面是我一些对扩散模型的理解,为防止日后遗忘,也为了互相学习,故写下此篇文章,如果有误欢迎在评论区中指出,咱们互相进步。

什么是扩散生成模型(扩散生成模型的目的)

扩散生成模型就是将训练数据的数据分布映射到高斯噪声上,然后在将随机采样获得的高斯噪声逆映射成新的数据

扩散生成模型的原理

扩散生成模型包含两个阶段,第一个阶段是前向扩散阶段,即逐步向输入的图片添加随机的高斯噪声直至获得纯噪声。第二个阶段是通过训练一个神经网络来预测出第一阶段中第T步中添加的随机高斯噪音然后将该噪音去除从而获得第T-1步的图片,重复这个过程直至获得原始输入图像。

扩散生成模型中第一阶段的作用是什么

第一个作用是为第二阶段的神经网络的训练提供每个时间步中加入的随机高斯噪声和每步加噪后的图片,作为训练的标签。

第二个作用是,直接从高斯噪声中重建清晰的图像是一个极端困难的任务,因此,扩散模型将这一任务分解为多个较小的子任务,即在多个时间步长上逐步去除噪声,极大降低了模型的训练难度

扩散模型的优缺点

优点:

  • 生成的图像质量高:扩散模型能够生成高度逼真的图像。
  • 灵活性:模型可以灵活地调整生成过程中的参数,以控制生成样本的多样性。
  • 训练稳定性:相比其他生成模型,如生成对抗网络(GANs),扩散模型的训练通常更为稳定,因为扩散模型直接使用MSE损失,这种损失函数直接衡量模型输出与真实数据之间的差异,而无需依赖于另一个网络。

缺点:

  • 计算成本高:扩散模型不能够一步去生成图像,而是需要执行大量的迭代步骤,因此计算成本比较高
  • 显存需求大:扩散模型的参数量比较大,需要比较大的显存才能装得下。

如何对扩散模型的优化/改进

1、使用采样速度更快的采样方法,如DDIM、DPM等

2、在扩散模型的两端分别套上VAE的编码器和VAE的解码器,将扩散模型从像素空间的计算变成潜在空间中的计算,极大的节省了计算成本。

3、将扩散模型的主体架构Unet替换为Transformer

扩散模型和GAN的区别

扩散模型和GANs都是生成模型,但它们的工作方式不同。GANs使用两个神经网络------生成器和判别器,通过对抗的方式学习数据分布。而扩散模型则通过前向扩散过程和反向去噪过程来学习数据分布,没有直接的对抗机制。扩散模型使用MSE(均方误差)损失函数比GAN使用的对抗损失函数更稳定,更容易训练

相关推荐
逐云者1236 分钟前
AI创业公司:来牟科技-智能割草机器人
人工智能·科技·机器人·智能割草机器人
taxunjishu6 分钟前
CC-Link IE FB 转 DeviceNet 实现欧姆龙 PLC 与松下机器人在 SMT 生产线锡膏印刷环节的精准定位控制
运维·人工智能·物联网·自动化·区块链
茫茫人海一粒沙8 分钟前
让语言模型自我进化:探索 Self-Refine 的迭代反馈机制
人工智能
富唯智能13 分钟前
复合机器人能否更换末端执行器?
人工智能·工业机器人·复合机器人
小杨互联网1 小时前
如何确保 ChatGPT 不会让你变“傻”?——四个防止认知萎缩的习惯
人工智能·chatgpt
AMiner:AI科研助手1 小时前
警惕!你和ChatGPT的对话,可能正在制造分布式妄想
人工智能·分布式·算法·chatgpt·deepseek
飞机火车巴雷特2 小时前
【论文阅读】LightThinker: Thinking Step-by-Step Compression (EMNLP 2025)
论文阅读·人工智能·大模型·cot
张较瘦_2 小时前
[论文阅读] 人工智能 + 软件工程 | ReCode:解决LLM代码修复“贵又慢”!细粒度检索+真实基准让修复准确率飙升
论文阅读·人工智能·软件工程
万岳科技程序员小金4 小时前
餐饮、跑腿、零售多场景下的同城外卖系统源码扩展方案
人工智能·小程序·软件开发·app开发·同城外卖系统源码·外卖小程序·外卖app开发
桐果云4 小时前
解锁桐果云零代码数据平台能力矩阵——赋能零售行业数字化转型新动能
大数据·人工智能·矩阵·数据挖掘·数据分析·零售