Datawhale AI 夏令营 从零入门 AI for Science(AI + 经济)

1.在TASK3中虽然给出了时间序列挖掘加融合模型的方法预测price,但是并不能识别到负电价的情况。查看TASK3给出的代码的预测结果可以发现模型几乎不会预测出负数,这和实际情况是有差别的。

2.爬取天气信息

可以发现温度的变化也会影响price的变化

利用这些信息可以进一步提升模型的效果

相关推荐
阿里云大数据AI技术几秒前
[VLDB 2025]面向Flink集群巡检的交叉对比学习异常检测
大数据·人工智能·flink
a15046342 分钟前
人工智能——图像梯度处理、边缘检测、绘制图像轮廓、凸包特征检测
人工智能·深度学习·计算机视觉
荼蘼1 小时前
基于 KNN 算法的手写数字识别项目实践
人工智能·算法·机器学习
青云交1 小时前
电科金仓 KingbaseES 深度解码:技术突破・行业实践・沙龙邀约 -- 融合数据库的变革之力
大数据·数据安全·数字化转型·kingbasees·企业级应用·融合数据库·多模存储
shinelord明1 小时前
【计算机网络架构】网状型架构简介
大数据·分布式·计算机网络·架构·计算机科学与技术
wei_shuo1 小时前
亚马逊云科技 EC2 部署 Dify,集成 Amazon Bedrock 构建生成式 AI 应用
人工智能·amazon·amazon bedrock
ppo921 小时前
MCP简单应用:使用SpringAI + Cline + DeepSeek实现AI创建文件并写入内容
人工智能·后端
云卓SKYDROID1 小时前
无人机速度模块技术要点分析
人工智能·无人机·科普·高科技·云卓科技
lucky_syq2 小时前
Flink窗口:解锁流计算的秘密武器
大数据·flink
UQI-LIUWJ2 小时前
论文笔记:Tuning Language Models by Proxy
论文阅读·人工智能·语言模型