Datawhale AI 夏令营 从零入门 AI for Science(AI + 经济)

1.在TASK3中虽然给出了时间序列挖掘加融合模型的方法预测price,但是并不能识别到负电价的情况。查看TASK3给出的代码的预测结果可以发现模型几乎不会预测出负数,这和实际情况是有差别的。

2.爬取天气信息

可以发现温度的变化也会影响price的变化

利用这些信息可以进一步提升模型的效果

相关推荐
mwq3012310 分钟前
AI的“物理学”:揭秘GPT-3背后改变一切的“缩放定律”
人工智能
DP+GISer18 分钟前
自己制作遥感深度学习数据集进行遥感深度学习地物分类-试读
人工智能·深度学习·分类
victory043121 分钟前
TODO 分类任务指标计算和展示 准确率 F1 Recall
人工智能·机器学习·分类
rengang6621 分钟前
07-逻辑回归:分析用于分类问题的逻辑回归模型及其数学原理
人工智能·算法·机器学习·分类·逻辑回归
居7然35 分钟前
京东开源王炸!JoyAgent-JDGenie如何重新定义智能体开发?
人工智能·开源·大模型·mcp
老兵发新帖40 分钟前
归一化分析3
人工智能
QYR_111 小时前
2025-2031年全球 MT 插芯市场全景分析报告:技术演进、供需格局与投资前景
人工智能·自然语言处理·机器翻译
mwq301231 小时前
从GPT-1到GPT-2的性能飞跃及其驱动因素分析
人工智能
IT学长编程1 小时前
计算机毕业设计 基于EChants的海洋气象数据可视化平台设计与实现 Python 大数据毕业设计 Hadoop毕业设计选题【附源码+文档报告+安装调试】
大数据·hadoop·python·毕业设计·课程设计·毕业论文·海洋气象数据可视化平台