Elasticsearch(ES) 配置建议

Elasticsearch的内存建议设置为32GB以下,‌主要是因为Java虚拟机(‌JVM)‌在内存小于32G时会采用内存对象指针压缩技术,‌以提高内存使用效率。‌这种技术通过压缩对象指针,‌使得32位的指针可以引用40亿个对象,‌而不是40亿个字节,‌从而在堆内存达到32G时,‌仍然能够使用32bit的指针表示。‌然而,‌一旦内存超过这个界限,‌指针将切换到普通对象的指针,‌这将导致每个对象的指针变长,‌从而浪费更多的CPU和内存带宽,‌降低性能。‌此外,‌当JVM的内存设置为32GB以上时,‌实际使用的内存效果会下降,‌因为压缩下的对象会比未压缩的要小一些,‌正常是20-30%的差异。‌因此,‌为了效率和性能的考虑,‌建议将Elasticsearch的内存设置在32GB以下。

尽管内存充足,也应避免超过32GB的使用,以免浪费资源、降低CPU效率,并增加垃圾回收(GC)的负担。

推荐配置:

|-----|-----------|-------------|-------------------------|
| 日志类 | 特点 | 磁盘 | 集群节点数 |
| 搜索类 | 写入较少,查询频繁 | 单个分片不超过20G | 1:16 (内存:节点要存储的数据) |
| 日志类 | 写入频繁,查询较少 | 单个分片不要大于50G | 1:48-1:96 (内存:节点要存储的数据) |
| 冷节点 | 写入较少,查询较少 | | 1:96 |

对于数据量较小(100GB以下)的index

  • 往往写入压力查询压力相对较低,一般设置3~5个shard,numberofreplicas设置为1即可(也就是一主一从,共两副本)。

对于数据量较大(100GB以上)的index:

  • 一般把单个shard的数据量控制在(20GB~50GB)
  • 让index压力分摊至多个节点:可通过下面的参数来强制限定一个节点上该index的shard数量,让shard尽量分配到不同节点上。参数:
  • index.routing.allocation.totalshardsper_node
相关推荐
武子康4 小时前
大数据-184 Elasticsearch Doc Values 机制详解:列式存储如何支撑排序/聚合/脚本
大数据·后端·elasticsearch
expect7g5 小时前
Paimon源码解读 -- Compaction-8.专用压缩任务
大数据·后端·flink
良策金宝AI7 小时前
从CAD插件到原生平台:工程AI的演进路径与智能协同新范式
大数据·人工智能
康实训7 小时前
智慧老年实训室建设核心方案
大数据·实训室·养老实训室·实训室建设
min1811234567 小时前
分公司组织架构图在线设计 总部分支管理模板
大数据·人工智能·信息可视化·架构·流程图
周杰伦_Jay8 小时前
【Elasticsearch】核心概念,倒排索引,数据操纵
大数据·elasticsearch·搜索引擎
cai_cai08 小时前
springAlibaba + ollama + es 完成RAG知识库功能
大数据·elasticsearch·搜索引擎
老陈头聊SEO8 小时前
长尾关键词对SEO的重要性及其优化策略总结
其他·搜索引擎·seo优化
Cx330❀8 小时前
Git 分支管理完全指南:从基础到团队协作
大数据·git·搜索引擎·全文检索
库库茯苓8 小时前
Kibana报错:Unable to retrieve version information from Elasticsearch nodes (解决方法)Window11环境
elasticsearch·kibana