Elasticsearch(ES) 配置建议

Elasticsearch的内存建议设置为32GB以下,‌主要是因为Java虚拟机(‌JVM)‌在内存小于32G时会采用内存对象指针压缩技术,‌以提高内存使用效率。‌这种技术通过压缩对象指针,‌使得32位的指针可以引用40亿个对象,‌而不是40亿个字节,‌从而在堆内存达到32G时,‌仍然能够使用32bit的指针表示。‌然而,‌一旦内存超过这个界限,‌指针将切换到普通对象的指针,‌这将导致每个对象的指针变长,‌从而浪费更多的CPU和内存带宽,‌降低性能。‌此外,‌当JVM的内存设置为32GB以上时,‌实际使用的内存效果会下降,‌因为压缩下的对象会比未压缩的要小一些,‌正常是20-30%的差异。‌因此,‌为了效率和性能的考虑,‌建议将Elasticsearch的内存设置在32GB以下。

尽管内存充足,也应避免超过32GB的使用,以免浪费资源、降低CPU效率,并增加垃圾回收(GC)的负担。

推荐配置:

|-----|-----------|-------------|-------------------------|
| 日志类 | 特点 | 磁盘 | 集群节点数 |
| 搜索类 | 写入较少,查询频繁 | 单个分片不超过20G | 1:16 (内存:节点要存储的数据) |
| 日志类 | 写入频繁,查询较少 | 单个分片不要大于50G | 1:48-1:96 (内存:节点要存储的数据) |
| 冷节点 | 写入较少,查询较少 | | 1:96 |

对于数据量较小(100GB以下)的index

  • 往往写入压力查询压力相对较低,一般设置3~5个shard,numberofreplicas设置为1即可(也就是一主一从,共两副本)。

对于数据量较大(100GB以上)的index:

  • 一般把单个shard的数据量控制在(20GB~50GB)
  • 让index压力分摊至多个节点:可通过下面的参数来强制限定一个节点上该index的shard数量,让shard尽量分配到不同节点上。参数:
  • index.routing.allocation.totalshardsper_node
相关推荐
扁豆的主人1 小时前
Elasticsearch
大数据·elasticsearch·jenkins
想ai抽2 小时前
Flink重启策略有啥用
大数据·flink
TMT星球2 小时前
TCL华星t8项目正式开工,总投资额约295亿元
大数据·人工智能
阿里云大数据AI技术2 小时前
云栖实录 | 驶入智驾深水区:广汽的“数据突围“之路
大数据·人工智能
B站_计算机毕业设计之家2 小时前
python股票交易数据管理系统 金融数据 分析可视化 Django框架 爬虫技术 大数据技术 Hadoop spark(源码)✅
大数据·hadoop·python·金融·spark·股票·推荐算法
腾讯云开发者3 小时前
太古可口可乐的数智跃迁:用 AI 重构快消渠道的“最后一公里”
大数据
GIS数据转换器3 小时前
2025无人机在农业生态中的应用实践
大数据·网络·人工智能·安全·无人机
武子康4 小时前
大数据-132 Flink SQL 实战入门 | 3 分钟跑通 Table API + SQL 含 toChangelogStream 新写法
大数据·后端·flink
Lion Long4 小时前
PB级数据洪流下的抉择:从大数据架构师视角,深度解析时序数据库选型与性能优化(聚焦Apache IoTDB)
大数据·性能优化·apache·时序数据库·iotdb
Lx3525 小时前
Flink背压机制:原理与调优策略
大数据