OpenCV||超简略的Numpy小tip

一、基本类型

二、数组属性

三、数组迭代(了解)

复制代码
import numpy as np  
  
# 创建一个数组  
a = np.arange(6).reshape(2, 3)  
  
# 使用np.nditer遍历数组  
for x in np.nditer(a):  
    print(x)

np.nditer有多个参数,用于控制迭代器的行为,以下是一些重要参数的介绍:

  1. op:要迭代的数组或数组序列。

  2. flags :一个字符串列表,用于控制迭代器的行为。例如,'buffered''c_index''f_index''multi_index'等。这些标志可以组合使用,以满足不同的迭代需求。

    • 'buffered':启用缓冲,以减少内存访问次数。
    • 'c_index':跟踪C顺序索引。
    • 'f_index':跟踪Fortran顺序索引。
    • 'multi_index':跟踪多个索引或每个迭代维度一个索引元组。
  3. op_flags :一个字符串列表,用于指定每个操作数的标志。常用的有'readonly''readwrite''writeonly'

    • 'readonly':表示只读取操作数。
    • 'readwrite':表示将读取和写入操作数。
    • 'writeonly':表示只会写入操作数。
  4. op_dtypes:一个数据类型或数据类型元组,用于指定操作数所需的数据类型。如果启用了复制或缓冲,则数据将转换为指定的类型。

  5. order :控制迭代顺序,可选'C'(C顺序)、'F'(Fortran顺序)或'A'(如果所有数组都是Fortran连续的,则为'F'顺序,否则为'C'顺序)。

  6. casting :控制进行复制或缓冲时可能出现的数据转换类型。可选值包括'no''equiv''safe''same_kind''unsafe'

高级用法:

复制代码
# 同时迭代多个数组  
a = np.arange(6).reshape(2, 3)  
b = np.array([[1, 2, 3], [4, 5, 6]])  
  
# 使用multi_index同时获取索引和元素值  
it = np.nditer([a, b], flags=['multi_index'], op_flags=['readonly'])  
while not it.finished:  
    print(it.multi_index, it[0], it[1])  
    it.iternext()

四、写在最后

学习OpenCV前,扎实的Numpy基础是不容忽视的。

链接跳转:

章节一、OpenCV||超细节的基本操作

章节三、OpenCV||超详细的图像处理模块

章节四、OpenCV||超详细的灰度变换和直方图修正

章节五、OpenCV||超详细的图像平滑

章节六、OpenCV||超详细的几何变换

相关推荐
_codemonster12 小时前
计算机视觉入门到实战系列(九) SIFT算法(尺度空间、极值点判断)
深度学习·算法·计算机视觉
saoys13 小时前
Opencv 学习笔记:一文掌握四种经典图像滤波(均值 / 高斯 / 中值 / 双边)
笔记·opencv·学习
淬炼之火13 小时前
笔记:Cross Modal Fusion-Mamba
图像处理·笔记·计算机视觉·多模态·特征融合
_codemonster14 小时前
计算机视觉入门到实战系列(八)Harris角点检测算法
python·算法·计算机视觉
2501_9361460414 小时前
【计算机视觉系列】:基于YOLOv8-RepHGNetV2的鱿鱼目标检测模型优化与实现
yolo·目标检测·计算机视觉
2501_9361460414 小时前
工业零件视觉识别与定位系统_基于cascade-rcnn的实现
人工智能·深度学习·计算机视觉
Elaine33615 小时前
【验证码识别算法性能对比实验系统——KNN、SVM、CNN 与多模态大模型的性能博弈与机理分析】
python·opencv·支持向量机·cnn·多模态·数字图像处理
saoys16 小时前
Opencv 学习笔记:滑块(Trackbar)实现动态调整二值化阈值
笔记·opencv·学习
saoys16 小时前
Opencv 学习笔记:图像绘制(直线 / 圆 / 椭圆 / 矩形 / 多边形 + 文字添加)
笔记·opencv·学习
JicasdC123asd17 小时前
基于YOLO11-seg的MultiSEAMHead驾驶员疲劳检测系统_计算机视觉实时监测_眼睛嘴巴状态识别
人工智能·计算机视觉