Yolov8在RK3588上进行自定义目标检测(四)

参考

Yolov8在RK3588上进行自定义目标检测(一)

Yolov8在RK3588上进行自定义目标检测(二)

Yolov8在RK3588上进行自定义目标检测(三)

YOLOV8火灾检测模型的边缘端推理

验证rknn模型

1.将转换好的rknn模型上传到板子上,再在板子上安装rknn-toolkit-lite2,将上面的requirements_cp.38-2.0.0b0.txt和同一个项目下的rknn_toolkit_lite2-2.0.0b0-cp38-cp38-linux_aarch64.whl下载下来上传到板子的某个目录下。

复制代码
# 安装 RKNN-Toolkit2
pip install rknn_toolkit_lite2-2.0.0b0-cp38-cp38-linux_aarch64.whl

验证是否安装成功

复制代码
# 进入 Python 交互模式 
python 
# 导入 RKNNLite 类  
from rknnlite.api import RKNNLite

2.在rk3588上修改/rknn_model_zoo/examples/yolov8/model/coco_80_labels_list.txt为自己的标签种类;修改同目录下的dataset.txt为自己数据集中的一张图片;

/userdata/OCR/rknn_model_zoo/目录下执行以下代码。

复制代码
./build-linux.sh -t rk3588 -a aarch64 -d yolov8

3.执行后会在install/rk3588_linux_aarch64/rknn_yolov8_demo/下生成验证rknn模型程序:rknn_yolov8_demo。执行该程序验证rknn模型:

复制代码
./rknn_yolov8_demo model/yolov8.rknn model/1.jpg

4.运行完成后,会在rknn_yolov8_demo下生成out.png文件。

推理结果

参考链接:

YOLOv8部署在RK3588上_rk3588 yolov8部署-CSDN博客

yolov8目标检测 部署瑞芯微rk3588记录_yolov8 rknn-CSDN博客

https://download.csdn.net/blog/column/12698056/139685411

相关推荐
Niuguangshuo6 小时前
深入解析Stable Diffusion基石——潜在扩散模型(LDMs)
人工智能·计算机视觉·stable diffusion
迈火6 小时前
SD - Latent - Interposer:解锁Stable Diffusion潜在空间的创意工具
人工智能·gpt·计算机视觉·stable diffusion·aigc·语音识别·midjourney
wfeqhfxz25887826 小时前
YOLO13-C3k2-GhostDynamicConv烟雾检测算法实现与优化
人工智能·算法·计算机视觉
星爷AG I8 小时前
9-26 主动视觉(AGI基础理论)
人工智能·计算机视觉·agi
2501_941837268 小时前
蛤蜊生存状态分类识别 _ 基于YOLOv10n的海洋生物检测与分类_1
yolo·数据挖掘
Loacnasfhia912 小时前
面部表情识别与分类_YOLOv10n与MobileNetV4融合方案详解
yolo·分类·数据挖掘
Loacnasfhia914 小时前
贝类海产品物种识别与分类_---_基于YOLOv10n与特征金字塔共享卷积的改进方法
yolo·分类·数据挖掘
睡醒了叭15 小时前
目标检测-深度学习-SSD模型项目
人工智能·深度学习·目标检测
Coding茶水间15 小时前
基于深度学习的狗品种检测系统演示与介绍(YOLOv12/v11/v8/v5模型+Pyqt5界面+训练代码+数据集)
开发语言·人工智能·深度学习·yolo·目标检测·机器学习
ZCXZ12385296a15 小时前
【计算机视觉】基于YOLO13-C3k2-ConvAttn的电动汽车充电桩车位线自动检测与定位系统
人工智能·计算机视觉