Yolov8在RK3588上进行自定义目标检测(四)

参考

Yolov8在RK3588上进行自定义目标检测(一)

Yolov8在RK3588上进行自定义目标检测(二)

Yolov8在RK3588上进行自定义目标检测(三)

YOLOV8火灾检测模型的边缘端推理

验证rknn模型

1.将转换好的rknn模型上传到板子上,再在板子上安装rknn-toolkit-lite2,将上面的requirements_cp.38-2.0.0b0.txt和同一个项目下的rknn_toolkit_lite2-2.0.0b0-cp38-cp38-linux_aarch64.whl下载下来上传到板子的某个目录下。

# 安装 RKNN-Toolkit2
pip install rknn_toolkit_lite2-2.0.0b0-cp38-cp38-linux_aarch64.whl

验证是否安装成功

# 进入 Python 交互模式 
python 
# 导入 RKNNLite 类  
from rknnlite.api import RKNNLite

2.在rk3588上修改/rknn_model_zoo/examples/yolov8/model/coco_80_labels_list.txt为自己的标签种类;修改同目录下的dataset.txt为自己数据集中的一张图片;

/userdata/OCR/rknn_model_zoo/目录下执行以下代码。

./build-linux.sh -t rk3588 -a aarch64 -d yolov8

3.执行后会在install/rk3588_linux_aarch64/rknn_yolov8_demo/下生成验证rknn模型程序:rknn_yolov8_demo。执行该程序验证rknn模型:

./rknn_yolov8_demo model/yolov8.rknn model/1.jpg

4.运行完成后,会在rknn_yolov8_demo下生成out.png文件。

推理结果

参考链接:

YOLOv8部署在RK3588上_rk3588 yolov8部署-CSDN博客

yolov8目标检测 部署瑞芯微rk3588记录_yolov8 rknn-CSDN博客

https://download.csdn.net/blog/column/12698056/139685411

相关推荐
是十一月末29 分钟前
Opencv实现图片的边界填充和阈值处理
人工智能·python·opencv·计算机视觉
Eric.Lee20214 小时前
Paddle OCR 中英文检测识别 - python 实现
人工智能·opencv·计算机视觉·ocr检测
audyxiao0014 小时前
AI一周重要会议和活动概览
人工智能·计算机视觉·数据挖掘·多模态
CountingStars6196 小时前
目标检测常用评估指标(metrics)
人工智能·目标检测·目标跟踪
橙子小哥的代码世界6 小时前
【计算机视觉基础CV-图像分类】01- 从历史源头到深度时代:一文读懂计算机视觉的进化脉络、核心任务与产业蓝图
人工智能·计算机视觉
小陈phd8 小时前
OpenCV学习——图像融合
opencv·计算机视觉·cv
数据分析能量站8 小时前
目标检测-R-CNN
目标检测·r语言·cnn
是十一月末9 小时前
Opencv之对图片的处理和运算
人工智能·python·opencv·计算机视觉
今天炼丹了吗9 小时前
YOLOv11融合[ECCV2024]FADformer中的FFCM模块
yolo
神秘的土鸡10 小时前
LGMRec:结合局部与全局图学习的多模态推荐系统
目标检测·计算机视觉·云计算