Yolov8在RK3588上进行自定义目标检测(四)

参考

Yolov8在RK3588上进行自定义目标检测(一)

Yolov8在RK3588上进行自定义目标检测(二)

Yolov8在RK3588上进行自定义目标检测(三)

YOLOV8火灾检测模型的边缘端推理

验证rknn模型

1.将转换好的rknn模型上传到板子上,再在板子上安装rknn-toolkit-lite2,将上面的requirements_cp.38-2.0.0b0.txt和同一个项目下的rknn_toolkit_lite2-2.0.0b0-cp38-cp38-linux_aarch64.whl下载下来上传到板子的某个目录下。

复制代码
# 安装 RKNN-Toolkit2
pip install rknn_toolkit_lite2-2.0.0b0-cp38-cp38-linux_aarch64.whl

验证是否安装成功

复制代码
# 进入 Python 交互模式 
python 
# 导入 RKNNLite 类  
from rknnlite.api import RKNNLite

2.在rk3588上修改/rknn_model_zoo/examples/yolov8/model/coco_80_labels_list.txt为自己的标签种类;修改同目录下的dataset.txt为自己数据集中的一张图片;

/userdata/OCR/rknn_model_zoo/目录下执行以下代码。

复制代码
./build-linux.sh -t rk3588 -a aarch64 -d yolov8

3.执行后会在install/rk3588_linux_aarch64/rknn_yolov8_demo/下生成验证rknn模型程序:rknn_yolov8_demo。执行该程序验证rknn模型:

复制代码
./rknn_yolov8_demo model/yolov8.rknn model/1.jpg

4.运行完成后,会在rknn_yolov8_demo下生成out.png文件。

推理结果

参考链接:

YOLOv8部署在RK3588上_rk3588 yolov8部署-CSDN博客

yolov8目标检测 部署瑞芯微rk3588记录_yolov8 rknn-CSDN博客

https://download.csdn.net/blog/column/12698056/139685411

相关推荐
kyle~1 小时前
目标检测在国防和政府的应用实例
人工智能·目标检测·计算机视觉
Akttt2 小时前
【T2I】R&B: REGION AND BOUNDARY AWARE ZERO-SHOT GROUNDED TEXT-TO-IMAGE GENERATION
人工智能·深度学习·计算机视觉·text2img
jndingxin3 小时前
OpenCV CUDA模块设备层-----反向二值化阈值处理函数thresh_binary_inv_func()
人工智能·opencv·计算机视觉
jndingxin4 小时前
OpenCV CUDA模块设备层-----在 GPU 上执行类似于 std::copy 的操作函数warpCopy()
人工智能·opencv·计算机视觉
weixin_377634844 小时前
【数据增强】精细化贴图数据增强
人工智能·目标检测·贴图
jndingxin5 小时前
OpenCV CUDA模块设备层-----在GPU 上高效地执行两个 uint 类型值的最大值比较函数vmax2()
人工智能·opencv·计算机视觉
加油吧zkf6 小时前
目标检测新纪元:DETR到Mamba实战解析
图像处理·人工智能·python·目标检测·分类
顾道长生'6 小时前
(Arxiv-2024)自回归模型优于扩散:Llama用于可扩展的图像生成
计算机视觉·数据挖掘·llama·自回归模型·多模态生成与理解
千宇宙航7 小时前
闲庭信步使用SV搭建图像测试平台:第二十七课——图像的腐蚀
图像处理·计算机视觉·fpga开发
CoovallyAIHub8 小时前
YOLOv13都来了,目标检测还卷得动吗?别急,还有这些新方向!
深度学习·算法·计算机视觉