目标检测——GDXray数据集转为YOLO格式

关于该数据集的介绍可以看我写的另一篇博客:链接

论文题目: 《GDXray: The Database of X-ray Images for Nondestructive Testing》
论文链接:https://link.springer.com/article/10.1007/s10921-015-0315-7****

Github链接https://github.com/computervision-xray-testing/GDXray/blob/main/README.md

以GDXray的Baggages为例,其原数据集下载下来如下所示:

其中每个文件夹里都有ground_truth.txt,即坐标框相关的信息,ground_truth.txt内容如下:

知道了每个数字对应的含义,接下来的任务就简单了,因此只需要针对相同的ID创建同样的TXT的Label,并且对应图片的ID名即可,参考代码如下:

注:该代码仅是针对一组图片的,所有的图片都需转换的话再套一个循环即可!

python 复制代码
import os


def map_number_to_filename(dir_name, number):
    """
    将数字映射为特定的文件名格式。

    参数:
    - number: 一个浮点数,表示映射的键。

    返回:
    - str: 按照给定格式映射后的文件名。
    """


    # 将浮点数转换为字符串,并去掉不必要的小数点和之后的所有0
    number_str = format(number, '.0f')
    
    # 将字符串格式化为至少4位的数字,不足部分前面补0
    number_str_padded = number_str.zfill(4)
    
    # 构造文件名
    img_name = f"{dir_name}_{number_str_padded}.png"
    label_name = f"{dir_name}_{number_str_padded}.txt"

    
    return label_name, img_name


import cv2

def get_image_dimensions(image_path, pos_list):
    """
    使用OpenCV获取指定图片文件的宽度和高度。
    
    参数:
    - image_path: 图片文件的路径。
    
    返回:
    - (width, height): 图片的宽度和高度的元组。
    """
    templist = []
    # 使用cv2.imread读取图片,0表示以原始格式读取
    image = cv2.imread(image_path, 0)
    
    # 检查图片是否正确读取
    if image is None:
        raise FileNotFoundError(f"The image at path {image_path} could not be found or is not a valid image file.")
    
    # 图片的尺寸可以通过image.shape属性获取,它返回一个三元组(height, width, channels)
    height, width = image.shape[:2]

    b_w = float(pos_list[1]) - float(pos_list[0])
    b_h = float(pos_list[3]) - float(pos_list[2])
    b_x = (float(pos_list[0]) + float(pos_list[1]))/2.0
    b_y = (float(pos_list[2]) + float(pos_list[3]))/2.0

    x = float(b_x)/width
    y = float(b_y)/height
    w = float(b_w)/width
    h = float(b_h)/height
    
    templist.append(x)
    templist.append(y)
    templist.append(w)
    templist.append(h)
    return templist


if __name__ == "__main__":
    dir_path = r"F:\BaiduNetdiskDownload\DataSet\GDXray\Baggages\Baggages\B0001"
    dir_basename = os.path.basename(dir_path)
    ground_truth_txt = os.path.join(dir_path,'ground_truth.txt')
    save_txt_dir = os.path.join(os.path.dirname(dir_path), f"YOLO_{dir_basename}")
    if not os.path.exists(save_txt_dir):
        os.makedirs(save_txt_dir)

    f = open(ground_truth_txt,'r',encoding='utf-8')
    contents = f.readlines()

    for content in contents:
        content = content.strip().split("   ")
        filename, img_name = map_number_to_filename(dir_name=dir_basename, number=float(content[0]))
        img_path = os.path.join(dir_path, img_name)
        yolo_pos_list = get_image_dimensions(img_path, pos_list=content[1:])

        save_filename = os.path.join(save_txt_dir,filename)
        f_s = open(save_filename,'a',encoding='utf-8')
        f_s.write("0 ")
        f_s.write(str(yolo_pos_list[0]))
        f_s.write(" ")
        f_s.write(str(yolo_pos_list[1]))
        f_s.write(" ")
        f_s.write(str(yolo_pos_list[2]))
        f_s.write(" ")
        f_s.write(str(yolo_pos_list[3]))
        

拿一组数据集来进行实验,B0001文件夹

运行代码得到:

进行可视化验证,相关代码如下:链接

针对于它的类别暂时不知道写什么,但是框的位置没问题了,类别后期确定了根据做个映射就行,完美!!!

相关推荐
羊羊小栈2 天前
基于「YOLO目标检测 + 多模态AI分析」的遥感影像目标检测分析系统(vue+flask+数据集+模型训练)
人工智能·深度学习·yolo·目标检测·毕业设计·大作业
智数研析社3 天前
9120 部 TMDb 高分电影数据集 | 7 列全维度指标 (评分 / 热度 / 剧情)+API 权威源 | 电影趋势分析 / 推荐系统 / NLP 建模用
大数据·人工智能·python·深度学习·数据分析·数据集·数据清洗
xchenhao3 天前
Scikit-Learn 对糖尿病数据集(回归任务)进行全面分析
python·机器学习·回归·数据集·scikit-learn·特征·svm
xchenhao3 天前
Scikit-learn 对加州房价数据集(回归任务)进行全面分析
python·决策树·机器学习·回归·数据集·scikit-learn·knn
大霸王龙3 天前
基于vLLM与YOLO的智能图像分类系统
yolo·分类·数据挖掘
m_136874 天前
Mac M 系列芯片 YOLOv8 部署教程(CPU/Metal 后端一键安装)
yolo·macos
格林威4 天前
机器视觉在半导体制造中有哪些检测应用
人工智能·数码相机·yolo·计算机视觉·视觉检测·制造·相机
xchenhao4 天前
SciKit-Learn 全面分析分类任务 breast_cancer 数据集
python·机器学习·分类·数据集·scikit-learn·svm
、、、、南山小雨、、、、5 天前
YOLO在ubuntu22安装
yolo
羊羊小栈5 天前
基于「YOLO目标检测 + 多模态AI分析」的铁路轨道缺陷检测安全系统(vue+flask+数据集+模型训练)
人工智能·yolo·目标检测·语言模型·毕业设计·创业创新·大作业