音频重采样基本流程

目录

流程概述

音频重采样的基本流程为:

  1. 申请重采样器上下文
  2. 设置重采样去上下文的参数
  3. 初始化重采样器
  4. 申请数据存放的缓冲区空间
  5. 进行重采样

注意,要先设置参数再对重采样器初始化

用到的API

  1. SwrContext重采样器上下文的结构体。此结构是不透明的,这意味着,如果要设置选项,诸如av_opt_set等函数来设置。

  2. struct SwrContext *swr_alloc();,申请重采样器上下文。

  3. int av_opt_set(void *obj, const char *name, const char *val, int search_flags);
    int av_opt_set_int(void *obj, const char *name, int64_t val, int search_flags);
    int av_opt_set_chlayout(void *obj, const char *name, const AVChannelLayout *layout, int search_flags);

    av_opt_set* 函数簇,这里仅列举几个。以av_opt_set为例,用于将给定name的obj字段设置为指定的val。第一个void* 的obj参数表示要设置的对象,第二个name参数表示要设置的字段名称,以字符串形式传入。例如obj为SwrContext* 对象,name为"in_sample_rate"就对应着SwrContext中的同名字段。中间的部分就为要设置的参数,最后的search_flags表示搜索搜索标志,一般设为0即可。

  4. int swr_alloc_set_opts2(struct SwrContext **ps, const AVChannelLayout *out_ch_layout, enum AVSampleFormat out_sample_fmt, int out_sample_rate, const AVChannelLayout *in_ch_layout, enum AVSampleFormat in_sample_fmt, int in_sample_rate, int log_offset, void *log_ctx);如果还未分配则分配SwrContext,并设置/重置公共参数。就相当于alloc + set。

  5. int swr_init(struct SwrContext *s);重采样去初始化。必须在设置过SwrContext 参数之后初始化。

  6. int64_t av_rescale_rnd(int64_t a, int64_t b, int64_t c, enum AVRounding rnd)int64_t av_rescale(int64_t a, int64_t b, int64_t c)都是用于计算的(a*b/c),唯一的区别在于rnd可以设置向上取整向下取整等。

  7. int av_samples_alloc_array_and_samples(uint8_t ***audio_data, int *linesize, int nb_channels, int nb_samples, enum AVSampleFormat sample_fmt, int align);

    申请一个 data[nb_channels][ch_data] 的二维数组,所以audio_data要作为一个三级指针传进去。

  8. void av_freep(void *ptr);释放av_samples_alloc_array_and_samples申请的data。av_freep即使传入null也是安全的。用法示例:

    c 复制代码
    uint8_t *buf = av_malloc(16);
    av_freep(&buf);
  9. int64_t swr_get_delay(struct SwrContext *s, int64_t base);获取下一个输入样本相对于下一个输出样本所经历的延迟帧数。

  10. int swr_convert(struct SwrContext *s, uint8_t * const *out, int out_count, const uint8_t * const *in , int in_count);

    音频重采样,in和out是由av_samples_alloc_array_and_samples生成的data缓冲区。in_count和out_count则是对应的缓冲区大小的样本数。

  11. int av_samples_get_buffer_size(int *linesize, int nb_channels, int nb_samples, enum AVSampleFormat sample_fmt, int align);

    获取给定音频参数所需的缓冲区大小。

tips

  1. swr是software resample的缩写
  2. nb_samples样本数,表示每帧的每个通道中的采样点数。
  3. 重采样的三个关键参数:采样率、采样格式、声道布局。
  4. 音频的planner格式的数据是分在多个数组中的,例如左右声道的data[0]中存放L声道的数据,data[1]中存放R声道的数据。而交错模式的数据则是按照LRLR...的顺序统一放到data[0]中的。
  5. av_freep要取地址的原因,是因为要将指针置空,仅此而已。
  6. 老版本的FFmpeg,例如在ffmpeg-4.2下,音频声道数只是一个单一的int型字段。而新版本的FFmpeg,以ffmpeg-7.0为例,则是将音频数据封装为一个AVChannelLayout结构体了。所以在设置 'layout' 字段时,不能再用av_opt_set_int接口,而是要用av_opt_set_chlayout,name参数也要使用"in_chlayout"才行。

demo样例

重采样样例,参考:Examples - resample_audio.c

c 复制代码
#include <iostream>
#include <fstream>
#include <string>
#include <cmath>
using namespace std;

extern "C"
{
#include <libavutil/opt.h>
#include <libavutil/channel_layout.h>
#include <libavutil/samplefmt.h>
#include <libswresample/swresample.h>
}

/* format转字符串 */
string string_sample_fmt(enum AVSampleFormat sample_fmt)
{
    // 定义sample_fmt_entry结构体,同时定义了一个数组
    struct sample_fmt_entry
    {
        enum AVSampleFormat sample_fmt; const char *fmt_be, *fmt_le;
    } sample_fmt_entries[] = {
            { AV_SAMPLE_FMT_U8,  "u8",    "u8"    },
            { AV_SAMPLE_FMT_S16, "s16be", "s16le" },
            { AV_SAMPLE_FMT_S32, "s32be", "s32le" },
            { AV_SAMPLE_FMT_FLT, "f32be", "f32le" },
            { AV_SAMPLE_FMT_DBL, "f64be", "f64le" },};
    // 返回字符串
    const char* str_fmt = nullptr;
    int arr_len = FF_ARRAY_ELEMS(sample_fmt_entries);
    for (int i = 0; i < arr_len; i++)
    {
        auto entry = sample_fmt_entries[i];
        if (sample_fmt == entry.sample_fmt)
        {
            return AV_NE(entry.fmt_be, entry.fmt_le);
        }
    }
}

/**
 * Fill dst buffer with nb_samples, generated starting from t.
 * 交错模式,函数摘自:https://ffmpeg.org/doxygen/7.0/resample_audio_8c-example.html
 * sin曲线,t表示当前所在的相位,周期为一帧所持续的时间
 */
void fill_samples(double *dst, int nb_samples, int nb_channels, int sample_rate, double *t)
{
    int i, j;
    double tincr = 1.0 / sample_rate, *dstp = dst;
    const double c = 2 * M_PI * 440.0;

    /* generate sin tone with 440Hz frequency and duplicated channels */
    for (i = 0; i < nb_samples; i++) {
        *dstp = sin(c * *t);
        for (j = 1; j < nb_channels; j++)
            dstp[j] = dstp[0];
        dstp += nb_channels;
        *t += tincr;
    }
}

int main()
{
    /* 采样参数定义 */
    // 输入参数
    int src_sample_rate = 48000;
    enum AVSampleFormat src_sample_fmt = AV_SAMPLE_FMT_DBL;
    AVChannelLayout src_ch_layout = AV_CHANNEL_LAYOUT_STEREO; // 立体声
    // 输出参数
    int dst_sample_rate = 44100;
    enum AVSampleFormat dst_sample_fmt = AV_SAMPLE_FMT_S16;
    AVChannelLayout dst_ch_layout = AV_CHANNEL_LAYOUT_STEREO; // 立体声

    // 创建重采样器上下文(暂且认为不会失败)
    SwrContext *swr_ctx = swr_alloc();

    /* 参数设置(SwrContext字段设置) */
    // 输入参数
    check_optset(av_opt_set_int(swr_ctx, "in_sample_rate", src_sample_rate, 0), __LINE__);
    check_optset(av_opt_set_sample_fmt(swr_ctx, "in_sample_fmt", src_sample_fmt, 0), __LINE__);
    check_optset(av_opt_set_chlayout(swr_ctx, "in_chlayout", &src_ch_layout, 0), __LINE__);
    // 输出参数
    check_optset(av_opt_set_int(swr_ctx, "out_sample_rate", dst_sample_rate, 0), __LINE__);
    check_optset(av_opt_set_sample_fmt(swr_ctx, "out_sample_fmt", dst_sample_fmt, 0), __LINE__);
    check_optset(av_opt_set_chlayout(swr_ctx, "out_chlayout", &dst_ch_layout, 0), __LINE__);

    // 参数设置完成后,初始化上下文
    swr_init(swr_ctx);

    // 给输入源分配内存空间
    uint8_t **src_data = nullptr;
    int src_linesize;
    int src_nb_samples = 1024; // 每个通道的样本数
    av_samples_alloc_array_and_samples(&src_data, &src_linesize, src_ch_layout.nb_channels,
                                       src_nb_samples, src_sample_fmt, 0);

    // 给输出源分配内存空间
    uint8_t **dst_data;
    int dst_linesize;
    // 计算输出的信道样本数:a * b / c,AV_ROUND_UP表示向上取整
    int dst_nb_samples = av_rescale_rnd(src_nb_samples, dst_sample_rate, src_sample_rate, AV_ROUND_UP);
    // 分配空间
    av_samples_alloc_array_and_samples(&dst_data, &dst_linesize, dst_ch_layout.nb_channels,
                                       dst_nb_samples, dst_sample_fmt, 0);

    // 采样转换
    double t = 0; // 时间,以输入源的时间为基准
    int max_nb_samples = dst_nb_samples;
    string dst_file_name = "out.pcm";
    ofstream dst_file(dst_file_name, ios_base::out | ios_base::binary);
    while(t < 10)
    {
        // 生成输入源(模拟)
        fill_samples((double*)src_data[0], src_nb_samples, src_ch_layout.nb_channels, src_sample_rate, &t);
        // 获取延迟(dst音频相对src音频延迟的帧数)
        int64_t delay = swr_get_delay(swr_ctx, src_sample_rate);
        // 输出的信道样本数,a * b / c
        dst_nb_samples = av_rescale(delay + src_nb_samples, dst_sample_rate, src_sample_rate);
        // 如果输出缓冲区大小不够,重新申请空间
        if(dst_nb_samples > max_nb_samples)
        {
            // 重新申请空间
            av_freep(&dst_data[0]);
            av_samples_alloc(dst_data, &dst_linesize, dst_ch_layout.nb_channels,
                                   dst_nb_samples, dst_sample_fmt, 1);
            max_nb_samples = dst_nb_samples;
        }
        // 音频重采样
        int ret = swr_convert(swr_ctx, dst_data, dst_nb_samples,
                              (const uint8_t **)src_data, src_nb_samples);
        // 获取给定音频参数所需的缓冲区大小。
        int dst_buf_size = av_samples_get_buffer_size(&dst_linesize, dst_ch_layout.nb_channels,
                                                      ret, dst_sample_fmt, 1);
        // write
        dst_file.write((char*)dst_data[0], dst_buf_size);
    }

    // clear and exit
    // TODO
}

附录 - SwrContext结构体字段

版本:ffmpeg-7.0

c 复制代码
struct SwrContext {
    const AVClass *av_class;                        ///< AVClass used for AVOption and av_log()
    int log_level_offset;                           ///< logging level offset
    void *log_ctx;                                  ///< parent logging context
    enum AVSampleFormat  in_sample_fmt;             ///< input sample format
    enum AVSampleFormat int_sample_fmt;             ///< internal sample format (AV_SAMPLE_FMT_FLTP or AV_SAMPLE_FMT_S16P)
    enum AVSampleFormat out_sample_fmt;             ///< output sample format
    AVChannelLayout used_ch_layout;                 ///< number of used input channels (mapped channel count if channel_map, otherwise in.ch_count)
    AVChannelLayout  in_ch_layout;                  ///< input channel layout
    AVChannelLayout out_ch_layout;                  ///< output channel layout
    int      in_sample_rate;                        ///< input sample rate
    int     out_sample_rate;                        ///< output sample rate
    int flags;                                      ///< miscellaneous flags such as SWR_FLAG_RESAMPLE
    float slev;                                     ///< surround mixing level
    float clev;                                     ///< center mixing level
    float lfe_mix_level;                            ///< LFE mixing level
    float rematrix_volume;                          ///< rematrixing volume coefficient
    float rematrix_maxval;                          ///< maximum value for rematrixing output
    int matrix_encoding;                            /**< matrixed stereo encoding */
    const int *channel_map;                         ///< channel index (or -1 if muted channel) map
    int engine;

    AVChannelLayout user_used_chlayout;             ///< User set used channel layout
    AVChannelLayout user_in_chlayout;               ///< User set input channel layout
    AVChannelLayout user_out_chlayout;              ///< User set output channel layout
    enum AVSampleFormat user_int_sample_fmt;        ///< User set internal sample format
    int user_dither_method;                         ///< User set dither method

    struct DitherContext dither;

    int filter_size;                                /**< length of each FIR filter in the resampling filterbank relative to the cutoff frequency */
    int phase_shift;                                /**< log2 of the number of entries in the resampling polyphase filterbank */
    int linear_interp;                              /**< if 1 then the resampling FIR filter will be linearly interpolated */
    int exact_rational;                             /**< if 1 then enable non power of 2 phase_count */
    double cutoff;                                  /**< resampling cutoff frequency (swr: 6dB point; soxr: 0dB point). 1.0 corresponds to half the output sample rate */
    int filter_type;                                /**< swr resampling filter type */
    double kaiser_beta;                                /**< swr beta value for Kaiser window (only applicable if filter_type == AV_FILTER_TYPE_KAISER) */
    double precision;                               /**< soxr resampling precision (in bits) */
    int cheby;                                      /**< soxr: if 1 then passband rolloff will be none (Chebyshev) & irrational ratio approximation precision will be higher */

    float min_compensation;                         ///< swr minimum below which no compensation will happen
    float min_hard_compensation;                    ///< swr minimum below which no silence inject / sample drop will happen
    float soft_compensation_duration;               ///< swr duration over which soft compensation is applied
    float max_soft_compensation;                    ///< swr maximum soft compensation in seconds over soft_compensation_duration
    float async;                                    ///< swr simple 1 parameter async, similar to ffmpegs -async
    int64_t firstpts_in_samples;                    ///< swr first pts in samples

    int resample_first;                             ///< 1 if resampling must come first, 0 if rematrixing
    int rematrix;                                   ///< flag to indicate if rematrixing is needed (basically if input and output layouts mismatch)
    int rematrix_custom;                            ///< flag to indicate that a custom matrix has been defined

    AudioData in;                                   ///< input audio data
    AudioData postin;                               ///< post-input audio data: used for rematrix/resample
    AudioData midbuf;                               ///< intermediate audio data (postin/preout)
    AudioData preout;                               ///< pre-output audio data: used for rematrix/resample
    AudioData out;                                  ///< converted output audio data
    AudioData in_buffer;                            ///< cached audio data (convert and resample purpose)
    AudioData silence;                              ///< temporary with silence
    AudioData drop_temp;                            ///< temporary used to discard output
    int in_buffer_index;                            ///< cached buffer position
    int in_buffer_count;                            ///< cached buffer length
    int resample_in_constraint;                     ///< 1 if the input end was reach before the output end, 0 otherwise
    int flushed;                                    ///< 1 if data is to be flushed and no further input is expected
    int64_t outpts;                                 ///< output PTS
    int64_t firstpts;                               ///< first PTS
    int drop_output;                                ///< number of output samples to drop
    double delayed_samples_fixup;                   ///< soxr 0.1.1: needed to fixup delayed_samples after flush has been called.

    struct AudioConvert *in_convert;                ///< input conversion context
    struct AudioConvert *out_convert;               ///< output conversion context
    struct AudioConvert *full_convert;              ///< full conversion context (single conversion for input and output)
    struct ResampleContext *resample;               ///< resampling context
    struct Resampler const *resampler;              ///< resampler virtual function table

    double matrix[SWR_CH_MAX][SWR_CH_MAX];          ///< floating point rematrixing coefficients
    float matrix_flt[SWR_CH_MAX][SWR_CH_MAX];       ///< single precision floating point rematrixing coefficients
    uint8_t *native_matrix;
    uint8_t *native_one;
    uint8_t *native_simd_one;
    uint8_t *native_simd_matrix;
    int32_t matrix32[SWR_CH_MAX][SWR_CH_MAX];       ///< 17.15 fixed point rematrixing coefficients
    uint8_t matrix_ch[SWR_CH_MAX][SWR_CH_MAX+1];    ///< Lists of input channels per output channel that have non zero rematrixing coefficients
    mix_1_1_func_type *mix_1_1_f;
    mix_1_1_func_type *mix_1_1_simd;

    mix_2_1_func_type *mix_2_1_f;
    mix_2_1_func_type *mix_2_1_simd;

    mix_any_func_type *mix_any_f;

    /* TODO: callbacks for ASM optimizations */
};
相关推荐
吴天德少侠1 小时前
c++返回一个pair类型
开发语言·c++
Pandaconda4 小时前
【C++ 面试 - 新特性】每日 3 题(六)
开发语言·c++·经验分享·笔记·后端·面试·职场和发展
北南京海4 小时前
【C++入门(5)】类和对象(初始类、默认成员函数)
开发语言·数据结构·c++
波点兔4 小时前
利用Python解析json生成PPT、xmind思维导图教程
json·powerpoint·音视频
Yusei_05234 小时前
C++基础知识6 vector
开发语言·c++
DongGei4 小时前
安卓-音频焦点
android·微信·音视频
黄卷青灯774 小时前
c++ 定义类 介绍
开发语言·c++·定义类
伍心4 小时前
004: VTK读入数据---vtkImageData详细说明
c++·windows·microsoft·mfc·软件工程·visual studio
bbqz0074 小时前
逆向WeChat(六)
c++·微信·小程序·逆向·mojo·嗅探·抓包https·devtool·sniff
我言秋日胜春朝★5 小时前
【C++】list的使用与简单模拟实现
c++