adaboost提升方法

集成学习:串联(提升方法),并联(随机森林)

Adaboost:分类加法模型(更新样本权值,投票权值-由权值误差率决定)

提升树:回归加法模型 (更新标签:为上次模型的残差,由平方误差最小原则学得弱分类器)

AdaBoost(Adaptive Boosting)是一种流行的提升方法,它通过迭代地组合多个弱分类器来构建一个强分类器。AdaBoost的核心思想是:

  1. 弱学习器的转换:即使弱学习器的性能只比随机猜测略好,AdaBoost也能够通过适当的组合提升其性能。
  2. 样本权重的调整:在每一轮迭代中,AdaBoost增加被前一轮弱分类器错误分类样本的权重,减少正确分类样本的权重,从而使得后续的弱学习器更加关注难以分类的样本。

AdaBoost算法流程

  1. 初始化:为训练数据集的每个样本分配相同的权重。
  2. 迭代训练:在每一轮中,根据当前权重分布训练一个弱分类器,并计算其在加权训练集上的表现。
  3. 权重更新:根据弱分类器的错误率调整样本权重,为下一轮迭代做准备。
  4. 组合弱分类器:通过加权多数表决的方式组合所有弱分类器,形成最终的强分类器。

提升树:决策树的强强联合

提升树是一种以决策树作为基本分类器的提升方法,它在分类和回归问题上都表现出色。提升树的关键特点包括:

  1. 决策树的简洁性:提升树中的决策树通常具有较浅的深度,如决策树桩,这使得它们易于理解和实现。
  2. 逐步优化:通过逐步添加决策树并优化损失函数,提升树能够逐渐逼近复杂的数据结构。

提升树算法流程

  1. 初始化模型:通常以一个常数值或基于训练数据的简单模型开始。
  2. 负梯度计算:在每一步中,计算当前模型输出与真实值之间的残差,即损失函数的负梯度。
  3. 弱学习器训练:训练一个新的决策树,使其拟合这些残差。
  4. 模型更新:将新训练的决策树以一定的学习率加入到现有模型中,更新整体模型。

梯度提升:损失函数的梯度下降

梯度提升算法是提升方法的另一种形式,它通过利用损失函数的负梯度作为残差的近似值来训练弱学习器。梯度提升的关键步骤包括:

  1. 初始化:设置一个初始模型,通常是一个常量或简单的预测。
  2. 迭代优化:在每一轮迭代中,计算当前模型的负梯度,并用它来指导新弱学习器的训练。
  3. 模型更新:将新训练的弱学习器加入到现有模型中,逐步优化整体模型。
相关推荐
GocNeverGiveUp1 分钟前
机器学习2-NumPy
人工智能·机器学习·numpy
浊酒南街1 小时前
决策树(理论知识1)
算法·决策树·机器学习
B站计算机毕业设计超人1 小时前
计算机毕业设计PySpark+Hadoop中国城市交通分析与预测 Python交通预测 Python交通可视化 客流量预测 交通大数据 机器学习 深度学习
大数据·人工智能·爬虫·python·机器学习·课程设计·数据可视化
学术头条1 小时前
清华、智谱团队:探索 RLHF 的 scaling laws
人工智能·深度学习·算法·机器学习·语言模型·计算语言学
18号房客1 小时前
一个简单的机器学习实战例程,使用Scikit-Learn库来完成一个常见的分类任务——**鸢尾花数据集(Iris Dataset)**的分类
人工智能·深度学习·神经网络·机器学习·语言模型·自然语言处理·sklearn
feifeikon1 小时前
机器学习DAY3 : 线性回归与最小二乘法与sklearn实现 (线性回归完)
人工智能·机器学习·线性回归
古希腊掌管学习的神1 小时前
[机器学习]sklearn入门指南(2)
人工智能·机器学习·sklearn
IT猿手2 小时前
最新高性能多目标优化算法:多目标麋鹿优化算法(MOEHO)求解TP1-TP10及工程应用---盘式制动器设计,提供完整MATLAB代码
开发语言·深度学习·算法·机器学习·matlab·多目标算法
强哥之神2 小时前
Nexa AI发布OmniAudio-2.6B:一款快速的音频语言模型,专为边缘部署设计
人工智能·深度学习·机器学习·语言模型·自然语言处理·音视频·openai
18号房客2 小时前
一个简单的深度学习模型例程,使用Keras(基于TensorFlow)构建一个卷积神经网络(CNN)来分类MNIST手写数字数据集。
人工智能·深度学习·机器学习·生成对抗网络·语言模型·自然语言处理·tensorflow