adaboost提升方法

集成学习:串联(提升方法),并联(随机森林)

Adaboost:分类加法模型(更新样本权值,投票权值-由权值误差率决定)

提升树:回归加法模型 (更新标签:为上次模型的残差,由平方误差最小原则学得弱分类器)

AdaBoost(Adaptive Boosting)是一种流行的提升方法,它通过迭代地组合多个弱分类器来构建一个强分类器。AdaBoost的核心思想是:

  1. 弱学习器的转换:即使弱学习器的性能只比随机猜测略好,AdaBoost也能够通过适当的组合提升其性能。
  2. 样本权重的调整:在每一轮迭代中,AdaBoost增加被前一轮弱分类器错误分类样本的权重,减少正确分类样本的权重,从而使得后续的弱学习器更加关注难以分类的样本。

AdaBoost算法流程

  1. 初始化:为训练数据集的每个样本分配相同的权重。
  2. 迭代训练:在每一轮中,根据当前权重分布训练一个弱分类器,并计算其在加权训练集上的表现。
  3. 权重更新:根据弱分类器的错误率调整样本权重,为下一轮迭代做准备。
  4. 组合弱分类器:通过加权多数表决的方式组合所有弱分类器,形成最终的强分类器。

提升树:决策树的强强联合

提升树是一种以决策树作为基本分类器的提升方法,它在分类和回归问题上都表现出色。提升树的关键特点包括:

  1. 决策树的简洁性:提升树中的决策树通常具有较浅的深度,如决策树桩,这使得它们易于理解和实现。
  2. 逐步优化:通过逐步添加决策树并优化损失函数,提升树能够逐渐逼近复杂的数据结构。

提升树算法流程

  1. 初始化模型:通常以一个常数值或基于训练数据的简单模型开始。
  2. 负梯度计算:在每一步中,计算当前模型输出与真实值之间的残差,即损失函数的负梯度。
  3. 弱学习器训练:训练一个新的决策树,使其拟合这些残差。
  4. 模型更新:将新训练的决策树以一定的学习率加入到现有模型中,更新整体模型。

梯度提升:损失函数的梯度下降

梯度提升算法是提升方法的另一种形式,它通过利用损失函数的负梯度作为残差的近似值来训练弱学习器。梯度提升的关键步骤包括:

  1. 初始化:设置一个初始模型,通常是一个常量或简单的预测。
  2. 迭代优化:在每一轮迭代中,计算当前模型的负梯度,并用它来指导新弱学习器的训练。
  3. 模型更新:将新训练的弱学习器加入到现有模型中,逐步优化整体模型。
相关推荐
大大dxy大大1 小时前
机器学习实现逻辑回归-癌症分类预测
机器学习·分类·逻辑回归
武子康1 小时前
AI研究-119 DeepSeek-OCR PyTorch FlashAttn 2.7.3 推理与部署 模型规模与资源详细分析
人工智能·深度学习·机器学习·ai·ocr·deepseek·deepseek-ocr
没有钱的钱仔4 小时前
机器学习笔记
人工智能·笔记·机器学习
DP+GISer7 小时前
基于站点数据进行遥感机器学习参数反演-以XGBOOST反演LST为例(附带数据与代码)试读
人工智能·python·机器学习·遥感与机器学习
LHZSMASH!12 小时前
神经流形:大脑功能几何基础的革命性视角
人工智能·深度学习·神经网络·机器学习
青云交12 小时前
Java 大视界 --Java 大数据在智慧农业农产品市场价格预测与种植决策支持中的应用实战
机器学习·智慧农业·数据安全·农业物联网·价格预测·java 大数据·种植决策
大明者省12 小时前
图像卷积操值超过了255怎么处理
深度学习·神经网络·机器学习
小白狮ww13 小时前
模型不再是一整块!Hunyuan3D-Part 实现可控组件式 3D 生成
人工智能·深度学习·机器学习·教程·3d模型·hunyuan3d·3d创作
印象编程13 小时前
数据挖掘 | 决策树ID3算法
机器学习·数据挖掘
B站计算机毕业设计之家17 小时前
大数据python招聘数据分析预测系统 招聘数据平台 +爬虫+可视化 +django框架+vue框架 大数据技术✅
大数据·爬虫·python·机器学习·数据挖掘·数据分析