YOLO:输入mp4视频数据,经过YOLO目标检测算法,输出带有目标框的新视频

作者:CSDN @ 养乐多

本文将介绍输入mp4视频数据,经过YOLO目标检测算法,输出带有目标框的新视频的代码脚本。


文章目录


一、代码

代码只需要安装好cv2、ultralytics,然后修改模型路径、输入mp4视频文件路径、保存文件的路径。点击运行即可进行对视频数据的推理,结果保存一个新的带有目标框的新视频。

python 复制代码
import cv2
from ultralytics import YOLO
import datetime

# 加载YOLOv8n模型
model = YOLO('../预训练模型/yolov8n.pt')  # 替换为你的模型路径

# 打开输入视频
input_video_path = '../测试mp4视频/yourInputVideo.mp4'  # 替换为你的输入视频路径
cap = cv2.VideoCapture(input_video_path)

# 获取视频信息
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = cap.get(cv2.CAP_PROP_FPS)
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))

# 获取当前时间并生成时间戳后缀
now = datetime.datetime.now()
time_str = now.strftime("%Y%m%d_%H%M%S")

# 定义输出视频路径并加上时间戳后缀
output_video_path = f'./runsVideo/output_video_{time_str}.mp4'  # 替换为你的输出视频路径
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_video_path, fourcc, fps, (frame_width, frame_height))

frame_number = 0

while cap.isOpened():
    ret, frame = cap.read()
    if not ret:
        break

    # 使用YOLOv8进行检测
    results = model(frame)

    # 解析结果并绘制检测框
    for result in results:
        boxes = result.boxes
        for box in boxes:
            x1, y1, x2, y2 = map(int, box.xyxy[0])  # 获取检测框坐标
            confidence = float(box.conf[0])  # 获取置信度
            cls = int(box.cls[0])  # 获取类别
            label = model.names[cls]  # 获取类别名称

            # 绘制检测框和标签
            cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
            cv2.putText(frame, f"{label} {confidence:.2f}", (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)

    # 获取当前时间并绘制到帧上
    now = datetime.datetime.now()
    time_str = now.strftime("%Y-%m-%d %H:%M:%S")
    cv2.putText(frame, time_str, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2, cv2.LINE_AA)

    # 写入处理后的帧
    out.write(frame)

    frame_number += 1
    print(f'Processing frame {frame_number}/{frame_count}')

# 释放资源
cap.release()
out.release()
相关推荐
Tracy9736 小时前
OT83211_VC1:4通道 ASRC OTG(44.1kHz~192kHz)音频采样率转换器产品介绍
嵌入式硬件·音视频·xmos 模组·xmos模组固件
电鱼智能的电小鱼11 小时前
基于电鱼 AI 工控机的智慧工地视频智能分析方案——边缘端AI检测,实现无人值守下的实时安全预警
网络·人工智能·嵌入式硬件·算法·安全·音视频
AI纪元故事会14 小时前
【计算机视觉目标检测算法对比:R-CNN、YOLO与SSD全面解析】
人工智能·算法·目标检测·计算机视觉
音视频牛哥14 小时前
从协议规范和使用场景探讨为什么SmartMediaKit没有支持DASH
人工智能·音视频·大牛直播sdk·dash·dash还是rtmp·dash还是rtsp·dash还是hls
音视频牛哥14 小时前
SmartMediaKit:如何让智能系统早人一步“跟上现实”的时间架构--从实时流媒体到系统智能的演进
人工智能·计算机视觉·音视频·音视频开发·具身智能·十五五规划具身智能·smartmediakit
音视频牛哥15 小时前
超清≠清晰:视频系统里的分辨率陷阱与秩序真相
人工智能·机器学习·计算机视觉·音视频·大牛直播sdk·rtsp播放器rtmp播放器·smartmediakit
johnny23315 小时前
AI视频创作工具汇总:MoneyPrinterTurbo、KrillinAI、NarratoAI、ViMax
人工智能·音视频
AI纪元故事会16 小时前
《目标检测全解析:从R-CNN到DETR,六大经典模型深度对比与实战指南》
人工智能·yolo·目标检测·r语言·cnn
Python图像识别18 小时前
75_基于深度学习的咖啡叶片病害检测系统(yolo11、yolov8、yolov5+UI界面+Python项目源码+模型+标注好的数据集)
python·深度学习·yolo
EasyCVR19 小时前
视频融合平台EasyCVR级联失败问题排查:请求上级播放后,视频为何无法打开?
音视频