YOLO:输入mp4视频数据,经过YOLO目标检测算法,输出带有目标框的新视频

作者:CSDN @ 养乐多

本文将介绍输入mp4视频数据,经过YOLO目标检测算法,输出带有目标框的新视频的代码脚本。


文章目录


一、代码

代码只需要安装好cv2、ultralytics,然后修改模型路径、输入mp4视频文件路径、保存文件的路径。点击运行即可进行对视频数据的推理,结果保存一个新的带有目标框的新视频。

python 复制代码
import cv2
from ultralytics import YOLO
import datetime

# 加载YOLOv8n模型
model = YOLO('../预训练模型/yolov8n.pt')  # 替换为你的模型路径

# 打开输入视频
input_video_path = '../测试mp4视频/yourInputVideo.mp4'  # 替换为你的输入视频路径
cap = cv2.VideoCapture(input_video_path)

# 获取视频信息
frame_width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
frame_height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = cap.get(cv2.CAP_PROP_FPS)
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))

# 获取当前时间并生成时间戳后缀
now = datetime.datetime.now()
time_str = now.strftime("%Y%m%d_%H%M%S")

# 定义输出视频路径并加上时间戳后缀
output_video_path = f'./runsVideo/output_video_{time_str}.mp4'  # 替换为你的输出视频路径
fourcc = cv2.VideoWriter_fourcc(*'mp4v')
out = cv2.VideoWriter(output_video_path, fourcc, fps, (frame_width, frame_height))

frame_number = 0

while cap.isOpened():
    ret, frame = cap.read()
    if not ret:
        break

    # 使用YOLOv8进行检测
    results = model(frame)

    # 解析结果并绘制检测框
    for result in results:
        boxes = result.boxes
        for box in boxes:
            x1, y1, x2, y2 = map(int, box.xyxy[0])  # 获取检测框坐标
            confidence = float(box.conf[0])  # 获取置信度
            cls = int(box.cls[0])  # 获取类别
            label = model.names[cls]  # 获取类别名称

            # 绘制检测框和标签
            cv2.rectangle(frame, (x1, y1), (x2, y2), (0, 255, 0), 2)
            cv2.putText(frame, f"{label} {confidence:.2f}", (x1, y1 - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)

    # 获取当前时间并绘制到帧上
    now = datetime.datetime.now()
    time_str = now.strftime("%Y-%m-%d %H:%M:%S")
    cv2.putText(frame, time_str, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2, cv2.LINE_AA)

    # 写入处理后的帧
    out.write(frame)

    frame_number += 1
    print(f'Processing frame {frame_number}/{frame_count}')

# 释放资源
cap.release()
out.release()
相关推荐
菜包eo10 小时前
如何设置直播间的观看门槛,让直播间安全有效地运行?
前端·安全·音视频
王者鳜錸11 小时前
使用Selenium自动化获取抖音创作者平台视频数据
selenium·自动化·音视频
却道天凉_好个秋11 小时前
音视频学习(三十七):pts和dts
音视频·pts·dts
沐尘而生12 小时前
【AI智能体】智能音视频-搭建可视化智能体
数据库·人工智能·ai作画·音视频·娱乐
Coovally AI模型快速验证12 小时前
基于YOLOv11的CF-YOLO,如何突破无人机小目标检测?
人工智能·神经网络·yolo·目标检测·计算机视觉·cnn·无人机
子时不睡13 小时前
【Datawhale AI 夏令营】 用AI做带货视频评论分析(一)
人工智能·深度学习·音视频
却道天凉_好个秋14 小时前
音视频学习(三十八):像素与位深
音视频·像素·位深
菜包eo14 小时前
教育行业可以采用Html5全链路对视频进行加密?有什么优势?
前端·音视频·html5
k093314 小时前
vue2中使用xgplayer播放流视频
音视频
慢行的骑兵17 小时前
Android音视频探索之旅 | C++层使用OpenGL ES实现视频渲染
android·音视频·ndk