pytorch的入门使用

pytorch安装略!

一.张量Tensor

张量是一个统称其中包含0阶,1阶,2阶,3阶,4阶,.......n阶。

0阶:标量,常数,0-D Tensor

1阶:向量,1-D Tensor

2阶:矩阵,2-D Tensor

一直增加维度

二.Pytorch中创建张量

1.列表或者序列创建tensor

python 复制代码
import torch

torch.tensor([[1., -1.], [1.,-1.]])

torch.tensor([[ 1.0000, -1.0000],
        [ 1.0000, -1.0000]])

2.numpy中的数组创建tensor

python 复制代码
torch.tensor(np.array([[1,2,3],[4,5,6]]))

3.使用pytorch中的api创建

python 复制代码
# 创建一个三行四列的无用数据tensor
torch.empty(3,4)

# 创建一个三行四列的全为1的tensor
torch.ones(3,4)

# 创建一个三行四列的值全部在0-1之间的tensor
torch.rand(3,4)

# 创建一个三行四列的指定随机数的tensor
torch.randint(low=0,high=100,size=[3,4])

# 创建一个三行四列均值为0方差为1的tensor
torch.randn(3,4)

三.Pytorch中tensor的常用方法

1.获取数据

python 复制代码
a=torch.tensor(1)

# 如果不使用item方法,那么结果是tensor([1])

a.item()
# 输出结果为1

2.numpy数组和tensor互转

python 复制代码
a=torch.tensor([[1],[2],[3]])

# 之间使用.numpy就可以了

a.numpy()

# 如果a是numpy数组,那么就使用上面的创建方法
a=torch.tensor(a)

3.获取形状

python 复制代码
a=torch.tensor([[1],[2],[3]])
a.size()
# 返回形式为:tensor.Size([3,1])

4.改变形状

python 复制代码
a=torch.tensor([[1],
                [2],
                [3]])
b=a.view(1,3)

# 输出b就为:tensor([[1,2,3]])

5获取阶数

python 复制代码
tensor.dim()

# 几阶就返回几阶

6.获取最大值

python 复制代码
tensor.max()

7.转置

python 复制代码
tensor.t()

8.指定获取数据

python 复制代码
tensor[1,3]  # 和python列表一样

9.赋值

python 复制代码
tensor[1,3]=5 # 和python列表一样

10.切片

python 复制代码
# tensor[对行切片,对列切片]

#比如tensor[:,1]获取所有行中的第二列数据

四.tensor中的数据类型

上图中的Tensor types表示这种type的tensor是其实例

1.获取数据类型:

python 复制代码
tensor.dtype

2.指定数据类型

python 复制代码
# 创建一个两行三列的数据类型为float32的tensor
torch.ones([2,3],dtype=torch.float32)

修改数据类型

python 复制代码
# 注意这里是type
tensor.type(torch.int)

五.tensor的其他操作

tensor相加

python 复制代码
# 1.直接相加
tensor=tensor+tensor

# 2.add
torch.add(tensor1,tensor2)
tensor1.add(tensor2)

# 3.加常数
tensor+c

其实tensor的加减乘除和numpy操作都差不多,就不一一列举了

相关推荐
海天一色y11 分钟前
Pycharm(二十一)递归删除文件夹
ide·python·pycharm
xiaoxiaoxiaolll1 小时前
期刊速递 | 《Light Sci. Appl.》超宽带光热电机理研究,推动碳纳米管传感器在制药质控中的实际应用
人工智能·学习
练习两年半的工程师1 小时前
AWS TechFest 2025: 风险模型的转变、流程设计的转型、生成式 AI 从实验走向实施的三大关键要素、评估生成式 AI 用例的适配度
人工智能·科技·金融·aws
Elastic 中国社区官方博客4 小时前
Elasticsearch:智能搜索的 MCP
大数据·人工智能·elasticsearch·搜索引擎·全文检索
stbomei4 小时前
从“能说话”到“会做事”:AI Agent如何重构日常工作流?
人工智能
yzx9910134 小时前
生活在数字世界:一份人人都能看懂的网络安全生存指南
运维·开发语言·网络·人工智能·自动化
许泽宇的技术分享5 小时前
LangGraph深度解析:构建下一代智能Agent的架构革命——从Pregel到现代AI工作流的技术飞跃
人工智能·架构
乔巴先生245 小时前
LLMCompiler:基于LangGraph的并行化Agent架构高效实现
人工智能·python·langchain·人机交互
张子夜 iiii6 小时前
实战项目-----Python+OpenCV 实现对视频的椒盐噪声注入与实时平滑还原”
开发语言·python·opencv·计算机视觉
静西子6 小时前
LLM大语言模型部署到本地(个人总结)
人工智能·语言模型·自然语言处理