pytorch的入门使用

pytorch安装略!

一.张量Tensor

张量是一个统称其中包含0阶,1阶,2阶,3阶,4阶,.......n阶。

0阶:标量,常数,0-D Tensor

1阶:向量,1-D Tensor

2阶:矩阵,2-D Tensor

一直增加维度

二.Pytorch中创建张量

1.列表或者序列创建tensor

python 复制代码
import torch

torch.tensor([[1., -1.], [1.,-1.]])

torch.tensor([[ 1.0000, -1.0000],
        [ 1.0000, -1.0000]])

2.numpy中的数组创建tensor

python 复制代码
torch.tensor(np.array([[1,2,3],[4,5,6]]))

3.使用pytorch中的api创建

python 复制代码
# 创建一个三行四列的无用数据tensor
torch.empty(3,4)

# 创建一个三行四列的全为1的tensor
torch.ones(3,4)

# 创建一个三行四列的值全部在0-1之间的tensor
torch.rand(3,4)

# 创建一个三行四列的指定随机数的tensor
torch.randint(low=0,high=100,size=[3,4])

# 创建一个三行四列均值为0方差为1的tensor
torch.randn(3,4)

三.Pytorch中tensor的常用方法

1.获取数据

python 复制代码
a=torch.tensor(1)

# 如果不使用item方法,那么结果是tensor([1])

a.item()
# 输出结果为1

2.numpy数组和tensor互转

python 复制代码
a=torch.tensor([[1],[2],[3]])

# 之间使用.numpy就可以了

a.numpy()

# 如果a是numpy数组,那么就使用上面的创建方法
a=torch.tensor(a)

3.获取形状

python 复制代码
a=torch.tensor([[1],[2],[3]])
a.size()
# 返回形式为:tensor.Size([3,1])

4.改变形状

python 复制代码
a=torch.tensor([[1],
                [2],
                [3]])
b=a.view(1,3)

# 输出b就为:tensor([[1,2,3]])

5获取阶数

python 复制代码
tensor.dim()

# 几阶就返回几阶

6.获取最大值

python 复制代码
tensor.max()

7.转置

python 复制代码
tensor.t()

8.指定获取数据

python 复制代码
tensor[1,3]  # 和python列表一样

9.赋值

python 复制代码
tensor[1,3]=5 # 和python列表一样

10.切片

python 复制代码
# tensor[对行切片,对列切片]

#比如tensor[:,1]获取所有行中的第二列数据

四.tensor中的数据类型

上图中的Tensor types表示这种type的tensor是其实例

1.获取数据类型:

python 复制代码
tensor.dtype

2.指定数据类型

python 复制代码
# 创建一个两行三列的数据类型为float32的tensor
torch.ones([2,3],dtype=torch.float32)

修改数据类型

python 复制代码
# 注意这里是type
tensor.type(torch.int)

五.tensor的其他操作

tensor相加

python 复制代码
# 1.直接相加
tensor=tensor+tensor

# 2.add
torch.add(tensor1,tensor2)
tensor1.add(tensor2)

# 3.加常数
tensor+c

其实tensor的加减乘除和numpy操作都差不多,就不一一列举了

相关推荐
Jeremy_lf12 分钟前
【生成模型之三】ControlNet & Latent Diffusion Models论文详解
人工智能·深度学习·stable diffusion·aigc·扩散模型
桃花键神1 小时前
AI可信论坛亮点:合合信息分享视觉内容安全技术前沿
人工智能
野蛮的大西瓜1 小时前
开源呼叫中心中,如何将ASR与IVR菜单结合,实现动态的IVR交互
人工智能·机器人·自动化·音视频·信息与通信
CountingStars6192 小时前
目标检测常用评估指标(metrics)
人工智能·目标检测·目标跟踪
tangjunjun-owen2 小时前
第四节:GLM-4v-9b模型的tokenizer源码解读
人工智能·glm-4v-9b·多模态大模型教程
冰蓝蓝2 小时前
深度学习中的注意力机制:解锁智能模型的新视角
人工智能·深度学习
橙子小哥的代码世界2 小时前
【计算机视觉基础CV-图像分类】01- 从历史源头到深度时代:一文读懂计算机视觉的进化脉络、核心任务与产业蓝图
人工智能·计算机视觉
黄公子学安全2 小时前
Java的基础概念(一)
java·开发语言·python
新加坡内哥谈技术3 小时前
苏黎世联邦理工学院与加州大学伯克利分校推出MaxInfoRL:平衡内在与外在探索的全新强化学习框架
大数据·人工智能·语言模型
程序员一诺3 小时前
【Python使用】嘿马python高级进阶全体系教程第10篇:静态Web服务器-返回固定页面数据,1. 开发自己的静态Web服务器【附代码文档】
后端·python