【多模态处理】利用GPT逐一读取本地图片并生成描述并保存,支持崩溃后从最新进度恢复

【多模态处理】利用GPT逐一读取本地图片并生成描述,支持崩溃后从最新进度恢复题

代码功能:

读取本地图片文件,并使用GPT模型生成图像的元数据描述。生成的结果会保存到一个JSON文件中。代码还包含了检查点机制,以便在处理过程中程序崩溃时能够从最新的位置继续生成。

核心功能

  1. 读取文件并设置变量:
    • 从JSON文件中读取图像路径、宽度和高度等变量。
    • 根据读取的变量设置prompt,调用GPT模型。
  2. 调用GPT模型:
    • 使用openai.ChatCompletion.create方法调用GPT模型,生成图像的元数据描述。
    • 将生成的结果保存到JSON文件中。
  3. 保存输出到JSON:
    • 每处理一张图片,就将结果追加到JSON文件中。
  4. 使用检查点机制:
    • 每处理一张图片后,保存当前处理的位置。
    • 如果处理过程中出现错误,程序可以从上次保存的位置继续处理。
  5. 处理本地图片文件:
    • 从本地文件夹读取图片文件,并对每张图片进行处理。

最后碎碎念

提供一个模板,方便大家理解其思想,使用的时候,可以和openai最基本的代码对比着看

代码(使用中转平台url):

使用中转平台(需要设置中转平台url):

py 复制代码
from PIL import Image
import os
import base64
import openai
import pickle
import json

# 设置API密钥和中转平台URL
API_SECRET_KEY = "your_api_secret_key"
BASE_URL = "https://api.your_base_url.com/v1"

# 图像文件夹路径
image_directory_path = 'your_image_directory_path'

# 设置要处理的图像数量
number_of_images_to_process = 50

# 输出文件路径
output_file_path = "output_results.json"

# 初始化计数器
image_counter = 0

# 读取 JSON 数据文件
data_file = 'your_data_file.json'
with open(data_file, 'r') as f:
    data = json.load(f)

def encode_image(image_path):
    with open(image_path, "rb") as image_file:
        return base64.b64encode(image_file.read()).decode('utf-8')

def get_image_details(image_path):
    """
    获取图像的详细信息,包括图像ID和尺寸。

    参数:image_path (str): 图像文件的路径。

    返回:tuple: 包含图像ID(文件名,不包括扩展名)和图像尺寸(宽度,高度)的元组。

   	示例:get_image_details('path/to/image.jpg')  -> ('image', (800, 600))
    """
    image_filename = os.path.basename(image_path)
    image_id = os.path.splitext(image_filename)[0]
    with Image.open(image_path) as img:
        image_size = img.size
    return image_id, image_size

def chat_completions(image_path, width, height):
    base64_image = encode_image(image_path)
    image_id, image_size = get_image_details(image_path)

    client = OpenAI(api_key=API_SECRET_KEY, base_url=BASE_URL)
    response = openai.ChatCompletion.create(
        model="gpt-4",
        messages=[
            {"role": "system", "content": "You are an assistant that provides metadata information about images."},
            {"role": "user", "content": f"Image ID: {image_id}, Width: {width}, Height: {height}"}
        ],
        max_tokens=3000,
        timeout=999,
    )
    return response

# 初始化结果字典
results_dict = {}

# 检查是否存在检查点文件
checkpoint_file = "checkpoint.pkl"
if os.path.exists(checkpoint_file):
    with open(checkpoint_file, "rb") as f:
        start_index = pickle.load(f)
else:
    start_index = 0

# 处理图像文件
for i, image in enumerate(data[start_index:], start=start_index):
    image_name = image['image_path']
    image_file = os.path.join(image_directory_path, image_name)
    image_width = image['width']
    image_height = image['height']

    if image_name.lower().endswith(('.png', '.jpg', '.jpeg', '.tiff', '.bmp', '.gif')):
        try:
            response = chat_completions(image_file, image_width, image_height)
            result = {image_name: response.choices[0].message['content']}
            with open(output_file_path, "a") as output_file:
                output_file.write(json.dumps(result) + "\n")
        except Exception as e:
            print(f"Error processing image {image_name}: {e}")
            continue
        image_counter += 1
        if image_counter >= number_of_images_to_process:
            break
        with open(checkpoint_file, "wb") as f:
            pickle.dump(i+1, f)

代码(直接使用openai的key)

py 复制代码
from PIL import Image
import os
import base64
import openai
import pickle
import json

# 设置API密钥
API_SECRET_KEY = "your_api_secret_key"

# 图像文件夹路径
image_directory_path = 'your_image_directory_path'

# 设置要处理的图像数量
number_of_images_to_process = 50

# 输出文件路径
output_file_path = "output_results.json"

# 初始化计数器
image_counter = 0

# 读取 JSON 数据文件
data_file = 'your_data_file.json'
with open(data_file, 'r') as f:
    data = json.load(f)

def encode_image(image_path):
    with open(image_path, "rb") as image_file:
        return base64.b64encode(image_file.read()).decode('utf-8')

def get_image_details(image_path):
    """
    获取图像的详细信息,包括图像ID和尺寸。

    参数:image_path (str): 图像文件的路径。

    返回:tuple: 包含图像ID(文件名,不包括扩展名)和图像尺寸(宽度,高度)的元组。

   	示例:get_image_details('path/to/image.jpg')  -> ('image', (800, 600))
    """
    image_filename = os.path.basename(image_path)
    image_id = os.path.splitext(image_filename)[0]
    with Image.open(image_path) as img:
        image_size = img.size
    return image_id, image_size

def chat_completions(image_path, width, height):
    base64_image = encode_image(image_path)
    image_id, image_size = get_image_details(image_path)

    openai.api_key = API_SECRET_KEY
    response = openai.ChatCompletion.create(
        model="gpt-4",
        messages=[
            {"role": "system", "content": "You are an assistant that provides metadata information about images."},
            {"role": "user", "content": f"Image ID: {image_id}, Width: {width}, Height: {height}"}
        ],
        max_tokens=3000,
        timeout=999,
    )
    return response

# 初始化结果字典
results_dict = {}

# 检查是否存在检查点文件
checkpoint_file = "checkpoint.pkl"
if os.path.exists(checkpoint_file):
    with open(checkpoint_file, "rb") as f:
        start_index = pickle.load(f)
else:
    start_index = 0

# 处理图像文件
for i, image in enumerate(data[start_index:], start=start_index):
    image_name = image['image_path']
    image_file = os.path.join(image_directory_path, image_name)
    image_width = image['width']
    image_height = image['height']

    if image_name.lower().endswith(('.png', '.jpg', '.jpeg', '.tiff', '.bmp', '.gif')):
        try:
            response = chat_completions(image_file, image_width, image_height)
            result = {image_name: response.choices[0].message['content']}
            with open(output_file_path, "a") as output_file:
                output_file.write(json.dumps(result) + "\n")
        except Exception as e:
            print(f"Error processing image {image_name}: {e}")
            continue
        image_counter += 1
        if image_counter >= number_of_images_to_process:
            break
        with open(checkpoint_file, "wb") as f:
            pickle.dump(i+1, f)
相关推荐
量子位21 小时前
Nano Banana新玩法无限套娃!“GPT-5都不会处理这种级别的递归”
人工智能·gpt
AIBox3651 天前
国内可用 ChatGPT 中文版网站推荐(2025年11月最新)
人工智能·gpt·chatgpt
Ma0407132 天前
GPT:生成式预训练变形金刚
gpt
Keep_Trying_Go3 天前
LightningCLI教程 + 视频讲解
人工智能·pytorch·语言模型·大模型·多模态·lightning
山顶夕景3 天前
【LLM-video】HunyuanVideo-1.5视频生成模型
大模型·多模态·视频生成·sora
极客BIM工作室4 天前
从Transformer的Encoder与Decoder,到BERT和GPT的独立王国
gpt·bert·transformer
qqxhb5 天前
零基础MCP——第5章编程实战基础(网页、数据分析、调试与重构)
重构·数据挖掘·数据分析·多模态·mcp
合合技术团队6 天前
论文解读-对话中的多模态情感识别综述
大数据·人工智能·算法·大模型·多模态
KG_LLM图谱增强大模型7 天前
Vgent:基于图的多模态检索推理增强生成框架GraphRAG,突破长视频理解瓶颈
大数据·人工智能·算法·大模型·知识图谱·多模态
余俊晖8 天前
英伟达开源多模态视觉语言模型-Nemotron Nano V2 VL模型架构、训练方法、训练数据
人工智能·算法·语言模型·自然语言处理·多模态