【多模态处理】利用GPT逐一读取本地图片并生成描述并保存,支持崩溃后从最新进度恢复

【多模态处理】利用GPT逐一读取本地图片并生成描述,支持崩溃后从最新进度恢复题

代码功能:

读取本地图片文件,并使用GPT模型生成图像的元数据描述。生成的结果会保存到一个JSON文件中。代码还包含了检查点机制,以便在处理过程中程序崩溃时能够从最新的位置继续生成。

核心功能

  1. 读取文件并设置变量:
    • 从JSON文件中读取图像路径、宽度和高度等变量。
    • 根据读取的变量设置prompt,调用GPT模型。
  2. 调用GPT模型:
    • 使用openai.ChatCompletion.create方法调用GPT模型,生成图像的元数据描述。
    • 将生成的结果保存到JSON文件中。
  3. 保存输出到JSON:
    • 每处理一张图片,就将结果追加到JSON文件中。
  4. 使用检查点机制:
    • 每处理一张图片后,保存当前处理的位置。
    • 如果处理过程中出现错误,程序可以从上次保存的位置继续处理。
  5. 处理本地图片文件:
    • 从本地文件夹读取图片文件,并对每张图片进行处理。

最后碎碎念

提供一个模板,方便大家理解其思想,使用的时候,可以和openai最基本的代码对比着看

代码(使用中转平台url):

使用中转平台(需要设置中转平台url):

py 复制代码
from PIL import Image
import os
import base64
import openai
import pickle
import json

# 设置API密钥和中转平台URL
API_SECRET_KEY = "your_api_secret_key"
BASE_URL = "https://api.your_base_url.com/v1"

# 图像文件夹路径
image_directory_path = 'your_image_directory_path'

# 设置要处理的图像数量
number_of_images_to_process = 50

# 输出文件路径
output_file_path = "output_results.json"

# 初始化计数器
image_counter = 0

# 读取 JSON 数据文件
data_file = 'your_data_file.json'
with open(data_file, 'r') as f:
    data = json.load(f)

def encode_image(image_path):
    with open(image_path, "rb") as image_file:
        return base64.b64encode(image_file.read()).decode('utf-8')

def get_image_details(image_path):
    """
    获取图像的详细信息,包括图像ID和尺寸。

    参数:image_path (str): 图像文件的路径。

    返回:tuple: 包含图像ID(文件名,不包括扩展名)和图像尺寸(宽度,高度)的元组。

   	示例:get_image_details('path/to/image.jpg')  -> ('image', (800, 600))
    """
    image_filename = os.path.basename(image_path)
    image_id = os.path.splitext(image_filename)[0]
    with Image.open(image_path) as img:
        image_size = img.size
    return image_id, image_size

def chat_completions(image_path, width, height):
    base64_image = encode_image(image_path)
    image_id, image_size = get_image_details(image_path)

    client = OpenAI(api_key=API_SECRET_KEY, base_url=BASE_URL)
    response = openai.ChatCompletion.create(
        model="gpt-4",
        messages=[
            {"role": "system", "content": "You are an assistant that provides metadata information about images."},
            {"role": "user", "content": f"Image ID: {image_id}, Width: {width}, Height: {height}"}
        ],
        max_tokens=3000,
        timeout=999,
    )
    return response

# 初始化结果字典
results_dict = {}

# 检查是否存在检查点文件
checkpoint_file = "checkpoint.pkl"
if os.path.exists(checkpoint_file):
    with open(checkpoint_file, "rb") as f:
        start_index = pickle.load(f)
else:
    start_index = 0

# 处理图像文件
for i, image in enumerate(data[start_index:], start=start_index):
    image_name = image['image_path']
    image_file = os.path.join(image_directory_path, image_name)
    image_width = image['width']
    image_height = image['height']

    if image_name.lower().endswith(('.png', '.jpg', '.jpeg', '.tiff', '.bmp', '.gif')):
        try:
            response = chat_completions(image_file, image_width, image_height)
            result = {image_name: response.choices[0].message['content']}
            with open(output_file_path, "a") as output_file:
                output_file.write(json.dumps(result) + "\n")
        except Exception as e:
            print(f"Error processing image {image_name}: {e}")
            continue
        image_counter += 1
        if image_counter >= number_of_images_to_process:
            break
        with open(checkpoint_file, "wb") as f:
            pickle.dump(i+1, f)

代码(直接使用openai的key)

py 复制代码
from PIL import Image
import os
import base64
import openai
import pickle
import json

# 设置API密钥
API_SECRET_KEY = "your_api_secret_key"

# 图像文件夹路径
image_directory_path = 'your_image_directory_path'

# 设置要处理的图像数量
number_of_images_to_process = 50

# 输出文件路径
output_file_path = "output_results.json"

# 初始化计数器
image_counter = 0

# 读取 JSON 数据文件
data_file = 'your_data_file.json'
with open(data_file, 'r') as f:
    data = json.load(f)

def encode_image(image_path):
    with open(image_path, "rb") as image_file:
        return base64.b64encode(image_file.read()).decode('utf-8')

def get_image_details(image_path):
    """
    获取图像的详细信息,包括图像ID和尺寸。

    参数:image_path (str): 图像文件的路径。

    返回:tuple: 包含图像ID(文件名,不包括扩展名)和图像尺寸(宽度,高度)的元组。

   	示例:get_image_details('path/to/image.jpg')  -> ('image', (800, 600))
    """
    image_filename = os.path.basename(image_path)
    image_id = os.path.splitext(image_filename)[0]
    with Image.open(image_path) as img:
        image_size = img.size
    return image_id, image_size

def chat_completions(image_path, width, height):
    base64_image = encode_image(image_path)
    image_id, image_size = get_image_details(image_path)

    openai.api_key = API_SECRET_KEY
    response = openai.ChatCompletion.create(
        model="gpt-4",
        messages=[
            {"role": "system", "content": "You are an assistant that provides metadata information about images."},
            {"role": "user", "content": f"Image ID: {image_id}, Width: {width}, Height: {height}"}
        ],
        max_tokens=3000,
        timeout=999,
    )
    return response

# 初始化结果字典
results_dict = {}

# 检查是否存在检查点文件
checkpoint_file = "checkpoint.pkl"
if os.path.exists(checkpoint_file):
    with open(checkpoint_file, "rb") as f:
        start_index = pickle.load(f)
else:
    start_index = 0

# 处理图像文件
for i, image in enumerate(data[start_index:], start=start_index):
    image_name = image['image_path']
    image_file = os.path.join(image_directory_path, image_name)
    image_width = image['width']
    image_height = image['height']

    if image_name.lower().endswith(('.png', '.jpg', '.jpeg', '.tiff', '.bmp', '.gif')):
        try:
            response = chat_completions(image_file, image_width, image_height)
            result = {image_name: response.choices[0].message['content']}
            with open(output_file_path, "a") as output_file:
                output_file.write(json.dumps(result) + "\n")
        except Exception as e:
            print(f"Error processing image {image_name}: {e}")
            continue
        image_counter += 1
        if image_counter >= number_of_images_to_process:
            break
        with open(checkpoint_file, "wb") as f:
            pickle.dump(i+1, f)
相关推荐
lly_csdn12315 小时前
【Image Captioning】DynRefer
python·深度学习·ai·图像分类·多模态·字幕生成·属性识别
如果'\'真能转义说2 天前
TypeScript - 利用GPT辅助学习
gpt·学习·typescript
日出等日落2 天前
小白也能轻松上手的GPT-SoVITS AI语音克隆神器一键部署教程
人工智能·gpt
HyperAI超神经3 天前
超越 GPT-4o!从 HTML 到 Markdown,一键整理复杂网页;AI 对话不再冰冷,大模型对话微调数据集让响应更流畅
人工智能·深度学习·llm·html·数据集·多模态·gpt-4o
网络安全研发随想3 天前
深入理解GPT底层原理--从n-gram到RNN到LSTM/GRU到Transformer/GPT的进化
gpt·rnn·lstm
2401_897605654 天前
OpenAI进军实体机器人:GPT赋能的智能未来
前端·gpt·机器人
GISer Liu5 天前
Transformer详解:Attention机制原理
人工智能·python·gpt·深度学习·机器学习·语言模型·transformer
hunteritself5 天前
Sam Altman亲自确认:o3-mini即将上线!GPT和o系列模型合并!
人工智能·gpt·ai·chatgpt
睿深渊5 天前
【2025最新】国内中文版 ChatGPT镜像网站整理合集,GPT最新模型4o1,4o,4o-mini分类区别,镜像站是什么
人工智能·gpt
uncle_ll5 天前
ChatGPT大模型极简应用开发-目录
人工智能·gpt·chatgpt·大模型·llm