import cv2
import matplotlib.pylab as plt
import numpy as np
img1 = cv2.imread('D:\\gudugudu\\Pictures\\weixin\\xiaotidaya.jpg', cv2.IMREAD_ANYCOLOR)
img2 = cv2.imread('D:\\gudugudu\\Pictures\\weixin\\guoqing.jpg', cv2.IMREAD_GRAYSCALE)
img3 = cv2.imread('D:\\gudugudu\\Pictures\\weixin\\zhaoyang.jpg', cv2.IMREAD_GRAYSCALE)
img_x = cv2.resize(img1, (500, 500))
img_y = cv2.resize(img2, (500, 500))
img_z = cv2.resize(img3, (500, 500))
vc = cv2.VideoCapture("D:\\gudugudu\\Pictures\\weixin\\WeChat_20240706150425.mp4")
#梯度计算
#Soble算子 det = cv2.Soble(src, drpth, dx, dy, ksize);上下,左右的差异
#计算方法: 右-左*系数, 上-下*系数;
def soble(img):
soblex = cv2.Soble(img, cv2.CV_64F, 1, 0, ksize = 3)
soblex = cv2.convertScaleAbs(soblex)
cv2.imshow('name', soblex)
cv2.waitKey(0)
cv2.destroyAllWindows()
#分别计算xy再求和;
def Soblexy(img):
soblex = cv2.Soble(img, cv2.CV_64F, 1, 0, ksize = 3)
sobley = cv2.Soble(img, cv2.CV_64F, 0, 1, ksize = 3)
soblexy = cv2.addWeighted(soblex, 0.5, sobley, 0.5, 0)
cv2.imshow('name', soblexy)
cv2.waitKey(0)
cv2.destroyAllWindows()
#scharr算子: 数值大一些,结果的差异更加敏感
#laplacian算子: 对于差异更加敏感, 但是对于噪点的判断有误
def scharr(img):
scharrx = cv2.Scharr(img, cv2.CV_64F, 1, 0)
scharry = cv2.Scharr(img, cv2.CV_64F, 0, 1)
scharrx = cv2.convertScaleAbs(scharrx)
scharry = cv2.convertScaleAbs(scharry)
scharrxy = cv2.addWeighted(scharrx, 0.5, scharry, 0.5, 0)
cv2.imshow('name', scharrxy)
cv2.waitKey(0)
cv2.destroyAllWindows()
def LapLacion(img):
laplacion = cv2.Laplacian(img, cv2.CV_64F)
laplacion = cv2.convertScaleAbs(laplacion)
cv2.imshow('name', laplacion)
cv2.waitKey(0)
cv2.destroyAllWindows()
opencv_day6
咕噜咕嘟嘟嘟2024-08-06 16:31
相关推荐
何玺几秒前
从Pura 80系列影像和鸿蒙AI融合看华为创新的“不可复制性”仙人掌_lz38 分钟前
AI与机器学习ML:利用Python 从零实现神经网络我感觉。1 小时前
【医疗电子技术-7.2】血糖监测技术DeepSeek忠实粉丝1 小时前
微调篇--超长文本微调训练XiaoQiong.Zhang1 小时前
简历模板3——数据挖掘工程师5年经验Akamai中国1 小时前
为何AI推理正推动云计算从集中式向分布式转型oil欧哟1 小时前
🧐 如何让 AI 接入自己的 API?开发了一个将 OpenAPI 文档转为 MCP 服务的工具whoarethenext1 小时前
C++/OpenCV地砖识别系统结合 Libevent 实现网络化 AI 接入endNone1 小时前
【机器学习】SAE(Sparse Autoencoders)稀疏自编码器Blossom.1181 小时前
基于深度学习的智能视频分析系统:技术与实践