opencv_day6

复制代码
import cv2
import matplotlib.pylab as plt
import numpy as np
img1 = cv2.imread('D:\\gudugudu\\Pictures\\weixin\\xiaotidaya.jpg', cv2.IMREAD_ANYCOLOR)
img2 = cv2.imread('D:\\gudugudu\\Pictures\\weixin\\guoqing.jpg', cv2.IMREAD_GRAYSCALE)
img3 = cv2.imread('D:\\gudugudu\\Pictures\\weixin\\zhaoyang.jpg', cv2.IMREAD_GRAYSCALE)
img_x = cv2.resize(img1, (500, 500))
img_y = cv2.resize(img2, (500, 500))
img_z = cv2.resize(img3, (500, 500))
vc = cv2.VideoCapture("D:\\gudugudu\\Pictures\\weixin\\WeChat_20240706150425.mp4")


#梯度计算

#Soble算子 det = cv2.Soble(src, drpth, dx, dy, ksize);上下,左右的差异
#计算方法: 右-左*系数, 上-下*系数;


def soble(img):
    soblex = cv2.Soble(img, cv2.CV_64F, 1, 0, ksize = 3)
    soblex = cv2.convertScaleAbs(soblex)
    cv2.imshow('name', soblex)
    cv2.waitKey(0)
    cv2.destroyAllWindows()


#分别计算xy再求和;


def Soblexy(img):
    soblex = cv2.Soble(img, cv2.CV_64F, 1, 0, ksize = 3)
    sobley = cv2.Soble(img, cv2.CV_64F, 0, 1, ksize = 3)
    soblexy = cv2.addWeighted(soblex, 0.5, sobley, 0.5, 0)
    cv2.imshow('name', soblexy)
    cv2.waitKey(0)
    cv2.destroyAllWindows()


#scharr算子: 数值大一些,结果的差异更加敏感
#laplacian算子: 对于差异更加敏感, 但是对于噪点的判断有误


def scharr(img):
    scharrx = cv2.Scharr(img, cv2.CV_64F, 1, 0)
    scharry = cv2.Scharr(img, cv2.CV_64F, 0, 1)
    scharrx = cv2.convertScaleAbs(scharrx)
    scharry = cv2.convertScaleAbs(scharry)
    scharrxy = cv2.addWeighted(scharrx, 0.5, scharry, 0.5, 0)
    cv2.imshow('name', scharrxy)
    cv2.waitKey(0)
    cv2.destroyAllWindows()


def LapLacion(img):
    laplacion = cv2.Laplacian(img, cv2.CV_64F)
    laplacion = cv2.convertScaleAbs(laplacion)
    cv2.imshow('name', laplacion)
    cv2.waitKey(0)
    cv2.destroyAllWindows()
相关推荐
Juchecar5 分钟前
一文讲清 nn.Sequential 等容器类
人工智能
阿里云云原生40 分钟前
如何快速看懂「祖传项目」?Qoder 强势推出新利器
人工智能
美团技术团队1 小时前
LongCat-Flash:如何使用 SGLang 部署美团 Agentic 模型
人工智能·算法
程序员小袁2 小时前
基于C-MTEB/CMedQAv2-rerankingv的Qwen3-1.7b模型微调-demo
人工智能
飞哥数智坊3 小时前
AI 编程一年多,我终于明白:比技巧更重要的,是熟练度
人工智能·ai编程
新智元4 小时前
收手吧 GPT-5-Codex,外面全是 AI 编程智能体!
人工智能·openai
IT_陈寒4 小时前
Java 性能优化:5个被低估的JVM参数让你的应用吞吐量提升50%
前端·人工智能·后端
阿里云云原生4 小时前
阿里云基础设施 AI Tech Day AI 原生,智构未来——AI 原生架构与企业实践专场
人工智能
Memene摸鱼日报5 小时前
「Memene 摸鱼日报 2025.9.16」OpenAI 推出 GPT-5-Codex 编程模型,xAI 发布 Grok 4 Fast
人工智能·aigc
xiaohouzi1122335 小时前
OpenCV的cv2.VideoCapture如何加GStreamer后端
人工智能·opencv·计算机视觉