OpenCV中数据类型cv::Vec3f

cv::Vec3f 是 OpenCV 提供的一个模板类,用于表示具有三个元素的向量,每个元素都是 float 类型。在图像处理和计算机视觉中,这种类型的向量通常用于表示颜色值(如 BGR 颜色空间中的一个像素点)、坐标点(例如圆的中心),或其他需要三个浮点数的数据。

cv::Vec3f 的使用

1. 表示圆的参数

在使用 cv::HoughCircles 函数检测圆时,cv::Vec3f 通常用来表示检测到的圆的参数:

  • cv::Vec3f 的第一个元素是圆心的 x 坐标。
  • 第二个元素是圆心的 y 坐标。
  • 第三个元素是圆的半径。
cpp 复制代码
std::vector<cv::Vec3f> circles;
cv::HoughCircles(edges, circles, cv::HOUGH_GRADIENT, 1, 20, 50, 30, 10, 100);

for (const auto& circle : circles) {
    cv::Point center(cvRound(circle[0]), cvRound(circle[1]));
    int radius = cvRound(circle[2]);
    // 处理检测到的圆
}
2. 表示颜色值

cv::Vec3f 也可以用来表示图像中的颜色值,尤其是当你需要浮点精度时。例如:

cpp 复制代码
cv::Vec3f color(0.0f, 255.0f, 0.0f); // 绿色(BGR格式)
3. 表示三维坐标

在一些计算机视觉应用中,cv::Vec3f 也可以用来表示三维坐标点:

cpp 复制代码
cv::Vec3f point3D(1.0f, 2.0f, 3.0f);

代码示例

以下是一个完整的 C++ 示例,展示了如何使用 cv::Vec3f 来检测圆并处理相关参数:

cpp 复制代码
#include <opencv2/opencv.hpp>
#include <iostream>

void detectCircles(const cv::Mat& edges) {
    std::vector<cv::Vec3f> circles;
    cv::HoughCircles(edges, circles, cv::HOUGH_GRADIENT, 1, 20, 50, 30, 10, 100);

    for (const auto& circle : circles) {
        // 圆的中心坐标
        cv::Point center(cvRound(circle[0]), cvRound(circle[1]));
        // 圆的半径
        int radius = cvRound(circle[2]);

        std::cout << "Circle detected at (" << center.x << ", " << center.y << ") with radius " << radius << std::endl;

        // 在图像上绘制圆
        cv::Mat img = cv::imread("clock.jpg");
        cv::circle(img, center, radius, cv::Scalar(0, 255, 0), 2); // 绘制圆
        cv::circle(img, center, 3, cv::Scalar(0, 0, 255), -1); // 绘制圆心

        // 显示图像
        cv::imshow("Detected Circles", img);
        cv::waitKey(0);
    }
}

int main() {
    cv::Mat img = cv::imread("clock.jpg");
    if (img.empty()) {
        std::cerr << "Error: Image not found!" << std::endl;
        return -1;
    }

    cv::Mat gray;
    cv::cvtColor(img, gray, cv::COLOR_BGR2GRAY);
    cv::Mat edges;
    cv::GaussianBlur(gray, gray, cv::Size(5, 5), 0);
    cv::Canny(gray, edges, 50, 150);

    detectCircles(edges);

    return 0;
}

代码解释

  1. 读取图像并转换为灰度图像:

    • cv::imread 读取图像文件。
    • cv::cvtColor 将图像转换为灰度图。
  2. 应用高斯滤波和边缘检测:

    • cv::GaussianBlur 去噪。
    • cv::Canny 边缘检测。
  3. 检测圆并绘制:

    • cv::HoughCircles 检测图像中的圆,返回圆的参数作为 cv::Vec3f 向量。
    • 遍历检测到的圆,使用 cv::circle 在图像上绘制圆和圆心。
  4. 显示图像:

    • 使用 cv::imshow 显示图像,cv::waitKey 等待用户按键。

通过理解和正确使用 cv::Vec3f,您可以在 OpenCV 中高效地处理和管理三维数据或颜色数据。

相关推荐
测试人社区-千羽1 小时前
生物识别系统的测试安全性与漏洞防护实践
运维·人工智能·opencv·安全·数据挖掘·自动化·边缘计算
豆芽8193 小时前
计算机视觉:异常检测(paper with code汇总更新中)
人工智能·神经网络·计算机视觉·视觉检测·扩散模型
AI即插即用4 小时前
即插即用系列 | MICCAI EM-Net:融合 Mamba 与频域学习的高效 3D 医学图像分割网络
网络·人工智能·深度学习·神经网络·学习·计算机视觉·视觉检测
wtsolutions4 小时前
图像像素RGBA提取器 v2.0.0 - 精确提取图像颜色数据的专业工具
计算机视觉·rgba
Chunyyyen4 小时前
【第二十六周】OCR学习01
学习·计算机视觉·ocr
AI Chen4 小时前
【Opencv4快速入门】OpenCV中2D汉宁窗实现的数学原理详解
opencv
CoovallyAIHub5 小时前
告别“消失的小目标”:航拍图像检测新框架,精度飙升25.7%的秘诀
深度学习·算法·计算机视觉
CoovallyAIHub5 小时前
滑雪季又来了!如何用计算机视觉帮雪场解决最头疼的问题
深度学习·算法·计算机视觉
独自归家的兔6 小时前
大模型通义千问3-VL-Plus - 视觉推理(图像列表)
人工智能·计算机视觉
测试人社区-小明6 小时前
医疗AI测试:构建安全可靠的合规体系
运维·人工智能·opencv·数据挖掘·机器人·自动化·github