OpenCV中数据类型cv::Vec3f

cv::Vec3f 是 OpenCV 提供的一个模板类,用于表示具有三个元素的向量,每个元素都是 float 类型。在图像处理和计算机视觉中,这种类型的向量通常用于表示颜色值(如 BGR 颜色空间中的一个像素点)、坐标点(例如圆的中心),或其他需要三个浮点数的数据。

cv::Vec3f 的使用

1. 表示圆的参数

在使用 cv::HoughCircles 函数检测圆时,cv::Vec3f 通常用来表示检测到的圆的参数:

  • cv::Vec3f 的第一个元素是圆心的 x 坐标。
  • 第二个元素是圆心的 y 坐标。
  • 第三个元素是圆的半径。
cpp 复制代码
std::vector<cv::Vec3f> circles;
cv::HoughCircles(edges, circles, cv::HOUGH_GRADIENT, 1, 20, 50, 30, 10, 100);

for (const auto& circle : circles) {
    cv::Point center(cvRound(circle[0]), cvRound(circle[1]));
    int radius = cvRound(circle[2]);
    // 处理检测到的圆
}
2. 表示颜色值

cv::Vec3f 也可以用来表示图像中的颜色值,尤其是当你需要浮点精度时。例如:

cpp 复制代码
cv::Vec3f color(0.0f, 255.0f, 0.0f); // 绿色(BGR格式)
3. 表示三维坐标

在一些计算机视觉应用中,cv::Vec3f 也可以用来表示三维坐标点:

cpp 复制代码
cv::Vec3f point3D(1.0f, 2.0f, 3.0f);

代码示例

以下是一个完整的 C++ 示例,展示了如何使用 cv::Vec3f 来检测圆并处理相关参数:

cpp 复制代码
#include <opencv2/opencv.hpp>
#include <iostream>

void detectCircles(const cv::Mat& edges) {
    std::vector<cv::Vec3f> circles;
    cv::HoughCircles(edges, circles, cv::HOUGH_GRADIENT, 1, 20, 50, 30, 10, 100);

    for (const auto& circle : circles) {
        // 圆的中心坐标
        cv::Point center(cvRound(circle[0]), cvRound(circle[1]));
        // 圆的半径
        int radius = cvRound(circle[2]);

        std::cout << "Circle detected at (" << center.x << ", " << center.y << ") with radius " << radius << std::endl;

        // 在图像上绘制圆
        cv::Mat img = cv::imread("clock.jpg");
        cv::circle(img, center, radius, cv::Scalar(0, 255, 0), 2); // 绘制圆
        cv::circle(img, center, 3, cv::Scalar(0, 0, 255), -1); // 绘制圆心

        // 显示图像
        cv::imshow("Detected Circles", img);
        cv::waitKey(0);
    }
}

int main() {
    cv::Mat img = cv::imread("clock.jpg");
    if (img.empty()) {
        std::cerr << "Error: Image not found!" << std::endl;
        return -1;
    }

    cv::Mat gray;
    cv::cvtColor(img, gray, cv::COLOR_BGR2GRAY);
    cv::Mat edges;
    cv::GaussianBlur(gray, gray, cv::Size(5, 5), 0);
    cv::Canny(gray, edges, 50, 150);

    detectCircles(edges);

    return 0;
}

代码解释

  1. 读取图像并转换为灰度图像:

    • cv::imread 读取图像文件。
    • cv::cvtColor 将图像转换为灰度图。
  2. 应用高斯滤波和边缘检测:

    • cv::GaussianBlur 去噪。
    • cv::Canny 边缘检测。
  3. 检测圆并绘制:

    • cv::HoughCircles 检测图像中的圆,返回圆的参数作为 cv::Vec3f 向量。
    • 遍历检测到的圆,使用 cv::circle 在图像上绘制圆和圆心。
  4. 显示图像:

    • 使用 cv::imshow 显示图像,cv::waitKey 等待用户按键。

通过理解和正确使用 cv::Vec3f,您可以在 OpenCV 中高效地处理和管理三维数据或颜色数据。

相关推荐
AI小杨16 分钟前
【车道线检测】一、传统车道线检测:基于霍夫变换的车道线检测史诗级详细教程
人工智能·opencv·计算机视觉·霍夫变换·车道线检测
冷凝女子1 小时前
【QT】海康视频及openCv抓拍正脸接口
qt·opencv·音视频·海康
撞南墙者3 小时前
OpenCV自学系列(1)——简介和GUI特征操作
人工智能·opencv·计算机视觉
王哈哈^_^3 小时前
【数据集】【YOLO】【VOC】目标检测数据集,查找数据集,yolo目标检测算法详细实战训练步骤!
人工智能·深度学习·算法·yolo·目标检测·计算机视觉·pyqt
柳鲲鹏4 小时前
OpenCV视频防抖源码及编译脚本
人工智能·opencv·计算机视觉
jndingxin4 小时前
OpenCV视觉分析之目标跟踪(8)目标跟踪函数CamShift()使用
人工智能·opencv·目标跟踪
浮生如梦_9 小时前
Halcon基于laws纹理特征的SVM分类
图像处理·人工智能·算法·支持向量机·计算机视觉·分类·视觉检测
深度学习lover9 小时前
<项目代码>YOLOv8 苹果腐烂识别<目标检测>
人工智能·python·yolo·目标检测·计算机视觉·苹果腐烂识别
Eric.Lee202114 小时前
yolo v5 开源项目
人工智能·yolo·目标检测·计算机视觉
其实吧315 小时前
基于Matlab的图像融合研究设计
人工智能·计算机视觉·matlab