NLP 之词的表示与语言模型

表示的基本原理:

机器无法理解文字,却能进行复杂的数学运算------神经网络只要够深、够复杂,就能拟合足够复杂的数学模式。把文字嵌入(embed)到一个向量空间中去。

词表示(Word Representation)分为4代

1.独热(One hot)编码

基本原理:

假设中文字典有n个词元,那么第i(i=1,2,3,...,n)个词元的编码为一个长度为n的向量,它的第i位为1,其他为0。独热编码实现了对文本的向量化嵌入。

问题:

第一,向量的维度太长了,文本的表示过于稀疏;

第二,词向量与词向量之间完全正交,不具有相关性。

2.词频-逆文档词频(Term Frequency-Inverse Term Frequency, TF-IDF)

根据Zipf's Law,在给定的自然语言语料库中,任何一个词的频率与它在频率表中的排名成反比。

3.语境无关(Context-free/Non-contextual)的词表示:Word2vec

它对每一个词生成一个相同的词表示,不考虑同一个词在不同语境下含义的差别。

连续词袋法:

用一个浅层神经网络,依次遮住句子中的每一个词,然后用它的上下文来预测它

跳元法:

我们用一个k元词组来预测它的上下文

自监督预训练:

通过"破坏"句子的一部分,让模型预测它,从而实现对词的更精确的表示.

4.语境相关(Context-dependent/Contextual)的词表示:BERT

语言的多义性是人类自然语言的重要特点。

BERT考虑了三层嵌入:词嵌入、位置嵌入(词在句子中的位置)和句子嵌入,并把它们加起来作为最后的嵌入表示。

BERT使用WordPiece分词器(tokenizer),借鉴了自监督训练的思想,在两个任务上进行预训练:下句预测(Next Sentence Prediction)和掩码语言建模(Masked Language Modeling)。

下句预测是一个二分类任务:给定一个句子,判定另一个句子是否是它的下一句;

掩码语言建模任务随机掩盖其中15%的单词,并训练模型来预测被掩盖的单词,为了预测被掩盖的单词,模型从两个方向阅读该句并进行预测。

相关推荐
软件开发技术深度爱好者9 分钟前
基于多个大模型自己建造一个AI智能助手
人工智能
中國龍在廣州22 分钟前
现在人工智能的研究路径可能走反了
人工智能·算法·搜索引擎·chatgpt·机器人
攻城狮7号31 分钟前
小米具身大模型 MiMo-Embodied 发布并全面开源:统一机器人与自动驾驶
人工智能·机器人·自动驾驶·开源大模型·mimo-embodied·小米具身大模型
搜移IT科技35 分钟前
【无标题】2025ARCE亚洲机器人大会暨展览会将带来哪些新技术与新体验?
人工智能
信也科技布道师FTE1 小时前
当AMIS遇见AI智能体:如何为低代码开发装上“智慧大脑”?
人工智能·低代码·llm
青瓷程序设计1 小时前
植物识别系统【最新版】Python+TensorFlow+Vue3+Django+人工智能+深度学习+卷积神经网络算法
人工智能·python·深度学习
AI即插即用1 小时前
即插即用系列 | CVPR 2025 WPFormer:用于表面缺陷检测的查询式Transformer
人工智能·深度学习·yolo·目标检测·cnn·视觉检测·transformer
唐兴通个人1 小时前
数字化AI大客户营销TOB营销客户开发专业销售技巧培训讲师培训师唐兴通老师分享AI销冠人工智能销售AI赋能销售医药金融工业品制造业
人工智能·金融
人机与认知实验室2 小时前
国内主流大语言模型之比较
人工智能·语言模型·自然语言处理
T0uken2 小时前
【Python】UV:境内的深度学习环境搭建
人工智能·深度学习·uv