NLP 之词的表示与语言模型

表示的基本原理:

机器无法理解文字,却能进行复杂的数学运算------神经网络只要够深、够复杂,就能拟合足够复杂的数学模式。把文字嵌入(embed)到一个向量空间中去。

词表示(Word Representation)分为4代

1.独热(One hot)编码

基本原理:

假设中文字典有n个词元,那么第i(i=1,2,3,...,n)个词元的编码为一个长度为n的向量,它的第i位为1,其他为0。独热编码实现了对文本的向量化嵌入。

问题:

第一,向量的维度太长了,文本的表示过于稀疏;

第二,词向量与词向量之间完全正交,不具有相关性。

2.词频-逆文档词频(Term Frequency-Inverse Term Frequency, TF-IDF)

根据Zipf's Law,在给定的自然语言语料库中,任何一个词的频率与它在频率表中的排名成反比。

3.语境无关(Context-free/Non-contextual)的词表示:Word2vec

它对每一个词生成一个相同的词表示,不考虑同一个词在不同语境下含义的差别。

连续词袋法:

用一个浅层神经网络,依次遮住句子中的每一个词,然后用它的上下文来预测它

跳元法:

我们用一个k元词组来预测它的上下文

自监督预训练:

通过"破坏"句子的一部分,让模型预测它,从而实现对词的更精确的表示.

4.语境相关(Context-dependent/Contextual)的词表示:BERT

语言的多义性是人类自然语言的重要特点。

BERT考虑了三层嵌入:词嵌入、位置嵌入(词在句子中的位置)和句子嵌入,并把它们加起来作为最后的嵌入表示。

BERT使用WordPiece分词器(tokenizer),借鉴了自监督训练的思想,在两个任务上进行预训练:下句预测(Next Sentence Prediction)和掩码语言建模(Masked Language Modeling)。

下句预测是一个二分类任务:给定一个句子,判定另一个句子是否是它的下一句;

掩码语言建模任务随机掩盖其中15%的单词,并训练模型来预测被掩盖的单词,为了预测被掩盖的单词,模型从两个方向阅读该句并进行预测。

相关推荐
小二·16 分钟前
Python Web 开发进阶实战(终章):从单体应用到 AI 原生生态 —— 45 篇技术演进全景与未来开发者生存指南
前端·人工智能·python
秋名山大前端34 分钟前
AI数字孪生本体智能技术方案
人工智能·aigc·数据可视化
集和诚JHCTECH37 分钟前
边缘智能,触手可及|BRAV-7821高能效AI边缘计算系统正式发布
大数据·人工智能·边缘计算
新缸中之脑1 小时前
现代开发者的工具箱 (2026)
人工智能
才兄说1 小时前
机器人租售出场准?会卡节点上
人工智能·机器人
救救孩子把1 小时前
64-机器学习与大模型开发数学教程-5-11 本章总结与习题
人工智能·机器学习
救救孩子把1 小时前
55-机器学习与大模型开发数学教程-5-2 梯度下降法(GD)与随机梯度下降(SGD)
人工智能·机器学习
有Li2 小时前
学习通过皮层发育连续性迁移实现全生命周期脑解剖对应/文献速递-基于人工智能的医学影像技术
人工智能·深度学习·机器学习
BeforeEasy2 小时前
从零搭建一个完整的ai-agent小项目
人工智能·langchain
Jack___Xue2 小时前
AI大模型微调(三)------Qwen3模型Lora微调(使用Llamafactory)
人工智能