NLP 之词的表示与语言模型

表示的基本原理:

机器无法理解文字,却能进行复杂的数学运算------神经网络只要够深、够复杂,就能拟合足够复杂的数学模式。把文字嵌入(embed)到一个向量空间中去。

词表示(Word Representation)分为4代

1.独热(One hot)编码

基本原理:

假设中文字典有n个词元,那么第i(i=1,2,3,...,n)个词元的编码为一个长度为n的向量,它的第i位为1,其他为0。独热编码实现了对文本的向量化嵌入。

问题:

第一,向量的维度太长了,文本的表示过于稀疏;

第二,词向量与词向量之间完全正交,不具有相关性。

2.词频-逆文档词频(Term Frequency-Inverse Term Frequency, TF-IDF)

根据Zipf's Law,在给定的自然语言语料库中,任何一个词的频率与它在频率表中的排名成反比。

3.语境无关(Context-free/Non-contextual)的词表示:Word2vec

它对每一个词生成一个相同的词表示,不考虑同一个词在不同语境下含义的差别。

连续词袋法:

用一个浅层神经网络,依次遮住句子中的每一个词,然后用它的上下文来预测它

跳元法:

我们用一个k元词组来预测它的上下文

自监督预训练:

通过"破坏"句子的一部分,让模型预测它,从而实现对词的更精确的表示.

4.语境相关(Context-dependent/Contextual)的词表示:BERT

语言的多义性是人类自然语言的重要特点。

BERT考虑了三层嵌入:词嵌入、位置嵌入(词在句子中的位置)和句子嵌入,并把它们加起来作为最后的嵌入表示。

BERT使用WordPiece分词器(tokenizer),借鉴了自监督训练的思想,在两个任务上进行预训练:下句预测(Next Sentence Prediction)和掩码语言建模(Masked Language Modeling)。

下句预测是一个二分类任务:给定一个句子,判定另一个句子是否是它的下一句;

掩码语言建模任务随机掩盖其中15%的单词,并训练模型来预测被掩盖的单词,为了预测被掩盖的单词,模型从两个方向阅读该句并进行预测。

相关推荐
新智元几秒前
刚刚,Figure 03 惊天登场!四年狂造 10 万台,人类保姆集体失业
人工智能·openai
万猫学社3 分钟前
我们为什么需要Agent?
人工智能
共绩算力41 分钟前
OpenAI Whisper 语音识别模型:技术与应用全面分析
人工智能·whisper·语音识别·共绩算力
工藤学编程1 小时前
零基础学AI大模型之Stream流式输出实战
人工智能
不良人龍木木1 小时前
机器学习-常用库
人工智能·机器学习
罗橙7号1 小时前
【pyTorch】关于PyTorch的高级索引机制理解
人工智能·pytorch·python
rengang661 小时前
09-随机森林:介绍集成学习中通过多决策树提升性能的算法
人工智能·算法·随机森林·机器学习·集成学习
zskj_qcxjqr2 小时前
数字大健康浪潮下:智能设备重构人力生态,传统技艺如何新生?
大数据·人工智能·科技·机器人
梦想画家2 小时前
Cohen‘s Kappa系数:衡量分类一致性的黄金标准及其在NLP中的应用
自然语言处理·分类·数据挖掘
动能小子ohhh2 小时前
AI智能体(Agent)大模型入门【9】--如何在pycharm等其他编译软件调用ocr工具【只写后端代码不演示】
人工智能·python·深度学习·机器学习·pycharm·ocr