NLP 之词的表示与语言模型

表示的基本原理:

机器无法理解文字,却能进行复杂的数学运算------神经网络只要够深、够复杂,就能拟合足够复杂的数学模式。把文字嵌入(embed)到一个向量空间中去。

词表示(Word Representation)分为4代

1.独热(One hot)编码

基本原理:

假设中文字典有n个词元,那么第i(i=1,2,3,...,n)个词元的编码为一个长度为n的向量,它的第i位为1,其他为0。独热编码实现了对文本的向量化嵌入。

问题:

第一,向量的维度太长了,文本的表示过于稀疏;

第二,词向量与词向量之间完全正交,不具有相关性。

2.词频-逆文档词频(Term Frequency-Inverse Term Frequency, TF-IDF)

根据Zipf's Law,在给定的自然语言语料库中,任何一个词的频率与它在频率表中的排名成反比。

3.语境无关(Context-free/Non-contextual)的词表示:Word2vec

它对每一个词生成一个相同的词表示,不考虑同一个词在不同语境下含义的差别。

连续词袋法:

用一个浅层神经网络,依次遮住句子中的每一个词,然后用它的上下文来预测它

跳元法:

我们用一个k元词组来预测它的上下文

自监督预训练:

通过"破坏"句子的一部分,让模型预测它,从而实现对词的更精确的表示.

4.语境相关(Context-dependent/Contextual)的词表示:BERT

语言的多义性是人类自然语言的重要特点。

BERT考虑了三层嵌入:词嵌入、位置嵌入(词在句子中的位置)和句子嵌入,并把它们加起来作为最后的嵌入表示。

BERT使用WordPiece分词器(tokenizer),借鉴了自监督训练的思想,在两个任务上进行预训练:下句预测(Next Sentence Prediction)和掩码语言建模(Masked Language Modeling)。

下句预测是一个二分类任务:给定一个句子,判定另一个句子是否是它的下一句;

掩码语言建模任务随机掩盖其中15%的单词,并训练模型来预测被掩盖的单词,为了预测被掩盖的单词,模型从两个方向阅读该句并进行预测。

相关推荐
技术路上的探险家1 小时前
8 卡 V100 服务器:基于 vLLM 的 Qwen 大模型高效部署实战
运维·服务器·语言模型
33三 三like1 小时前
《基于知识图谱和智能推荐的养老志愿服务系统》开发日志
人工智能·知识图谱
芝士爱知识a1 小时前
【工具推荐】2026公考App横向评测:粉笔、华图与智蛙面试App功能对比
人工智能·软件推荐·ai教育·结构化面试·公考app·智蛙面试app·公考上岸
腾讯云开发者2 小时前
港科大熊辉|AI时代的职场新坐标——为什么你应该去“数据稀疏“的地方?
人工智能
工程师老罗2 小时前
YoloV1数据集格式转换,VOC XML→YOLOv1张量
xml·人工智能·yolo
Coder_Boy_3 小时前
技术让开发更轻松的底层矛盾
java·大数据·数据库·人工智能·深度学习
啊森要自信3 小时前
CANN ops-cv:面向计算机视觉的 AI 硬件端高效算子库核心架构与开发逻辑
人工智能·计算机视觉·架构·cann
2401_836235863 小时前
中安未来SDK15:以AI之眼,解锁企业档案的数字化基因
人工智能·科技·深度学习·ocr·生活
njsgcs3 小时前
llm使用 AgentScope-Tuner 通过 RL 训练 FrozenLake 智能体
人工智能·深度学习