opencv-霍夫变换

霍夫变换(Hough Transform)是一种图像处理技术,用于检测图像中的直线、圆和其他简单形状。它通过将图像空间(像素空间)中的点映射到参数空间,从而将形状检测问题转换为参数空间中的峰值检测问题。霍夫变换最常用的应用是直线检测和圆检测。

1. 直线检测

在直线检测中,霍夫变换将图像中的点映射到直线参数空间。通常有两种表示直线的方式:

  • 标准方程: ( y = mx + c )
  • 极坐标方程: ( \rho = x \cos \theta + y \sin \theta )

其中,(\rho) 是从原点到直线的垂直距离,(\theta) 是从x轴正方向逆时针旋转到该垂直线的角度。

OpenCV中的霍夫直线变换

在OpenCV中,有两种实现霍夫直线变换的方法:

  1. 标准霍夫变换 cv2.HoughLines
  2. 概率霍夫变换 cv2.HoughLinesP
标准霍夫变换 cv2.HoughLines
python 复制代码
import cv2
import numpy as np

# 读取图像并转换为灰度图
img = cv2.imread('image.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 应用Canny边缘检测
edges = cv2.Canny(gray, 50, 150, apertureSize=3)

# 标准霍夫变换
lines = cv2.HoughLines(edges, 1, np.pi / 180, 200)

# 绘制检测到的直线
if lines is not None:
    for rho, theta in lines[:, 0]:
        a = np.cos(theta)
        b = np.sin(theta)
        x0 = a * rho
        y0 = b * rho
        x1 = int(x0 + 1000 * (-b))
        y1 = int(y0 + 1000 * (a))
        x2 = int(x0 - 1000 * (-b))
        y2 = int(y0 - 1000 * (a))
        cv2.line(img, (x1, y1), (x2, y2), (0, 0, 255), 2)

cv2.imshow('Detected Lines', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
概率霍夫变换 cv2.HoughLinesP
python 复制代码
import cv2
import numpy as np

# 读取图像并转换为灰度图
img = cv2.imread('image.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 应用Canny边缘检测
edges = cv2.Canny(gray, 50, 150, apertureSize=3)

# 概率霍夫变换
lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=100, minLineLength=100, maxLineGap=10)

# 绘制检测到的直线
if lines is not None:
    for line in lines:
        x1, y1, x2, y2 = line[0]
        cv2.line(img, (x1, y1), (x2, y2), (0, 0, 255), 2)

cv2.imshow('Detected Lines', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

2. 圆检测

霍夫圆变换是霍夫变换的另一种形式,用于检测图像中的圆。

OpenCV中的霍夫圆变换

在OpenCV中,可以使用 cv2.HoughCircles 来实现霍夫圆变换。

python 复制代码
import cv2
import numpy as np

# 读取图像并转换为灰度图
img = cv2.imread('image.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 应用高斯模糊
gray = cv2.GaussianBlur(gray, (9, 9), 2)

# 霍夫圆变换
circles = cv2.HoughCircles(gray, cv2.HOUGH_GRADIENT, dp=1.2, minDist=30, param1=50, param2=30, minRadius=10, maxRadius=100)

# 绘制检测到的圆
if circles is not None:
    circles = np.uint16(np.around(circles))
    for i in circles[0, :]:
        cv2.circle(img, (i[0], i[1]), i[2], (0, 255, 0), 2)
        cv2.circle(img, (i[0], i[1]), 2, (0, 0, 255), 3)

cv2.imshow('Detected Circles', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

总结

  • 霍夫直线变换 :可以使用标准霍夫变换(cv2.HoughLines)和概率霍夫变换(cv2.HoughLinesP)来检测图像中的直线。标准霍夫变换适用于检测直线较多的场景,而概率霍夫变换更适合检测少量且较长的直线。
  • 霍夫圆变换 :可以使用 cv2.HoughCircles 检测图像中的圆形物体。通过调节参数,可以检测不同大小和不同间距的圆。

霍夫变换在图像处理和计算机视觉中有广泛的应用,尤其适用于检测图像中的几何形状,如直线和圆。

相关推荐
Toky丶26 分钟前
具身智能(一)关于VLA模型π0
人工智能
岛屿旅人26 分钟前
英国国防部推进本土化开放架构建设
网络·人工智能·安全·web安全·架构
chenchihwen27 分钟前
AI代码开发宝库系列:LangChain 工具链:从LCEL到实际应用
人工智能·python·langchain·rag
TwoAnts&DingJoy32 分钟前
数据分析-数据沙箱
人工智能·python·安全·数据分析·数据沙箱
FreeCode33 分钟前
Agent开发:LangChain1.0快速入门(一)
人工智能·llm·agent
CV实验室1 小时前
CV论文速递: 覆盖医学影像分析、视频理解与生成、3D场景理解与定位等方向! (10.27-10.31)
人工智能·计算机视觉·3d·音视频
飞哥数智坊1 小时前
MiniMax 是谁?为什么 M2 一出,大家又沸腾了?
人工智能
leafff1231 小时前
AI研究:轻量模型和专用模型在算力优化上的差异对游戏制作的效率和质量有何影响?
人工智能·游戏
LabVIEW开发1 小时前
LabVIEW用直线边缘检测实现液位测量
数码相机·计算机视觉·labview·labview知识·labview功能·labview程序
吃鱼不卡次2 小时前
RT-DETR解码模块(Decoder)
人工智能·深度学习·cross attention·rt-detr·匈牙利匹配·self attention·对比去噪训练