opencv-霍夫变换

霍夫变换(Hough Transform)是一种图像处理技术,用于检测图像中的直线、圆和其他简单形状。它通过将图像空间(像素空间)中的点映射到参数空间,从而将形状检测问题转换为参数空间中的峰值检测问题。霍夫变换最常用的应用是直线检测和圆检测。

1. 直线检测

在直线检测中,霍夫变换将图像中的点映射到直线参数空间。通常有两种表示直线的方式:

  • 标准方程: ( y = mx + c )
  • 极坐标方程: ( \rho = x \cos \theta + y \sin \theta )

其中,(\rho) 是从原点到直线的垂直距离,(\theta) 是从x轴正方向逆时针旋转到该垂直线的角度。

OpenCV中的霍夫直线变换

在OpenCV中,有两种实现霍夫直线变换的方法:

  1. 标准霍夫变换 cv2.HoughLines
  2. 概率霍夫变换 cv2.HoughLinesP
标准霍夫变换 cv2.HoughLines
python 复制代码
import cv2
import numpy as np

# 读取图像并转换为灰度图
img = cv2.imread('image.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 应用Canny边缘检测
edges = cv2.Canny(gray, 50, 150, apertureSize=3)

# 标准霍夫变换
lines = cv2.HoughLines(edges, 1, np.pi / 180, 200)

# 绘制检测到的直线
if lines is not None:
    for rho, theta in lines[:, 0]:
        a = np.cos(theta)
        b = np.sin(theta)
        x0 = a * rho
        y0 = b * rho
        x1 = int(x0 + 1000 * (-b))
        y1 = int(y0 + 1000 * (a))
        x2 = int(x0 - 1000 * (-b))
        y2 = int(y0 - 1000 * (a))
        cv2.line(img, (x1, y1), (x2, y2), (0, 0, 255), 2)

cv2.imshow('Detected Lines', img)
cv2.waitKey(0)
cv2.destroyAllWindows()
概率霍夫变换 cv2.HoughLinesP
python 复制代码
import cv2
import numpy as np

# 读取图像并转换为灰度图
img = cv2.imread('image.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 应用Canny边缘检测
edges = cv2.Canny(gray, 50, 150, apertureSize=3)

# 概率霍夫变换
lines = cv2.HoughLinesP(edges, 1, np.pi / 180, threshold=100, minLineLength=100, maxLineGap=10)

# 绘制检测到的直线
if lines is not None:
    for line in lines:
        x1, y1, x2, y2 = line[0]
        cv2.line(img, (x1, y1), (x2, y2), (0, 0, 255), 2)

cv2.imshow('Detected Lines', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

2. 圆检测

霍夫圆变换是霍夫变换的另一种形式,用于检测图像中的圆。

OpenCV中的霍夫圆变换

在OpenCV中,可以使用 cv2.HoughCircles 来实现霍夫圆变换。

python 复制代码
import cv2
import numpy as np

# 读取图像并转换为灰度图
img = cv2.imread('image.jpg')
gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

# 应用高斯模糊
gray = cv2.GaussianBlur(gray, (9, 9), 2)

# 霍夫圆变换
circles = cv2.HoughCircles(gray, cv2.HOUGH_GRADIENT, dp=1.2, minDist=30, param1=50, param2=30, minRadius=10, maxRadius=100)

# 绘制检测到的圆
if circles is not None:
    circles = np.uint16(np.around(circles))
    for i in circles[0, :]:
        cv2.circle(img, (i[0], i[1]), i[2], (0, 255, 0), 2)
        cv2.circle(img, (i[0], i[1]), 2, (0, 0, 255), 3)

cv2.imshow('Detected Circles', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

总结

  • 霍夫直线变换 :可以使用标准霍夫变换(cv2.HoughLines)和概率霍夫变换(cv2.HoughLinesP)来检测图像中的直线。标准霍夫变换适用于检测直线较多的场景,而概率霍夫变换更适合检测少量且较长的直线。
  • 霍夫圆变换 :可以使用 cv2.HoughCircles 检测图像中的圆形物体。通过调节参数,可以检测不同大小和不同间距的圆。

霍夫变换在图像处理和计算机视觉中有广泛的应用,尤其适用于检测图像中的几何形状,如直线和圆。

相关推荐
阿坡RPA13 小时前
手搓MCP客户端&服务端:从零到实战极速了解MCP是什么?
人工智能·aigc
用户277844910499313 小时前
借助DeepSeek智能生成测试用例:从提示词到Excel表格的全流程实践
人工智能·python
机器之心13 小时前
刚刚,DeepSeek公布推理时Scaling新论文,R2要来了?
人工智能
算AI15 小时前
人工智能+牙科:临床应用中的几个问题
人工智能·算法
凯子坚持 c16 小时前
基于飞桨框架3.0本地DeepSeek-R1蒸馏版部署实战
人工智能·paddlepaddle
你觉得20516 小时前
哈尔滨工业大学DeepSeek公开课:探索大模型原理、技术与应用从GPT到DeepSeek|附视频与讲义下载方法
大数据·人工智能·python·gpt·学习·机器学习·aigc
8K超高清17 小时前
中国8K摄像机:科技赋能文化传承新图景
大数据·人工智能·科技·物联网·智能硬件
hyshhhh17 小时前
【算法岗面试题】深度学习中如何防止过拟合?
网络·人工智能·深度学习·神经网络·算法·计算机视觉
薛定谔的猫-菜鸟程序员17 小时前
零基础玩转深度神经网络大模型:从Hello World到AI炼金术-详解版(含:Conda 全面使用指南)
人工智能·神经网络·dnn
币之互联万物17 小时前
2025 AI智能数字农业研讨会在苏州启幕,科技助农与数据兴业成焦点
人工智能·科技