torch.gather的使用

torch.gather 函数的作用是按照指定的维度 dim 和索引 index 从输入张量 input 中收集数值。这个操作通常用于根据索引从一个维度中选择元素,并生成一个新的张量作为输出

1. 介绍

1.1 参数说明

  • input: 需要从中选取元素的原始张量。
  • dim: 沿着此维度选取元素。例如,如果 dim=0,则沿着第一个维度(通常是)选取;如果 dim=1,则沿着第二个维度(通常是)选取。
  • index: 一个长整型张量,包含要选取的索引。index 的形状应该与 input 的形状相同,或者可以广播到 input 的形状。

1.2. 索引张量 index 的作用

  • index 张量中的每个元素指定了在 input 张量中 dim 维度上的位置。例如,如果 dim=1(列) 并且 index[i, j] 的值为 k,则从第 i 行的第 k 列选取元素
  • 根据 index 张量中的索引,在 input 张量中沿着 dim 维度收集元素。
  • 输出张量的形状与 index 张量的形状相同。这意味着除了 dim 维度之外,其他所有维度的大小都与 index 相同。

2. 示例

py 复制代码
import torch

# 创建一个输入张量
input_tensor = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

# 创建一个索引张量,其形状与输入张量相同
index_tensor = torch.tensor([[0, 2, 1], [2, 0, 1], [1, 0, 2]])

# 使用 torch.gather 收集元素,沿着列(dim=1)
output_tensor = torch.gather(input_tensor, 1, index_tensor)

print(output_tensor)

说明

在上面的示例中,torch.gather(input_tensor, 1, index_tensor) 的输出将是:

  • 对于第 0 行,列索引(dim为1)为 [0, 2, 1],所以收集的元素是 [1, 3, 2]。
  • 对于第 1 行,列索引为 [2, 0, 1],所以收集的元素是 [6, 4, 5]。
  • 对于第 2 行,列索引为 [1, 0, 2],所以收集的元素是 [8, 7, 9]。

因此,输出张量将是:

shell 复制代码
tensor([[1, 3, 2],
        [6, 4, 5],
        [8, 7, 9]])

注意事项:确保 index 中的所有值都在有效范围内,即从 0 到 input.size(dim) - 1。如果 index 中有任何值超出了这个范围,将会引发错误。

相关推荐
多巴胺与内啡肽.2 分钟前
深度学习--自然语言处理统计语言与神经语言模型
深度学习·语言模型·自然语言处理
偶尔微微一笑11 分钟前
AI网络渗透kali应用(gptshell)
linux·人工智能·python·自然语言处理·编辑器
深度之眼26 分钟前
2025时间序列都有哪些创新点可做——总结篇
人工智能·深度学习·机器学习·时间序列
Sherlock Ma1 小时前
PDFMathTranslate:基于LLM的PDF文档翻译及双语对照的工具【使用教程】
人工智能·pytorch·语言模型·pdf·大模型·机器翻译·deepseek
船长@Quant2 小时前
文档构建:Sphinx全面使用指南 — 基础篇
python·markdown·sphinx·文档构建
喵手2 小时前
从 Java 到 Kotlin:在现有项目中迁移的最佳实践!
java·python·kotlin
liuweidong08022 小时前
【Pandas】pandas DataFrame rsub
开发语言·python·pandas
CH3_CH2_CHO2 小时前
不吃【Numpy】版
开发语言·python·numpy
不吃香菜?3 小时前
PyTorch 实现食物图像分类实战:从数据处理到模型训练
人工智能·深度学习
-曾牛3 小时前
企业级AI开发利器:Spring AI框架深度解析与实战
java·人工智能·python·spring·ai·rag·大模型应用