torch.gather的使用

torch.gather 函数的作用是按照指定的维度 dim 和索引 index 从输入张量 input 中收集数值。这个操作通常用于根据索引从一个维度中选择元素,并生成一个新的张量作为输出

1. 介绍

1.1 参数说明

  • input: 需要从中选取元素的原始张量。
  • dim: 沿着此维度选取元素。例如,如果 dim=0,则沿着第一个维度(通常是)选取;如果 dim=1,则沿着第二个维度(通常是)选取。
  • index: 一个长整型张量,包含要选取的索引。index 的形状应该与 input 的形状相同,或者可以广播到 input 的形状。

1.2. 索引张量 index 的作用

  • index 张量中的每个元素指定了在 input 张量中 dim 维度上的位置。例如,如果 dim=1(列) 并且 index[i, j] 的值为 k,则从第 i 行的第 k 列选取元素
  • 根据 index 张量中的索引,在 input 张量中沿着 dim 维度收集元素。
  • 输出张量的形状与 index 张量的形状相同。这意味着除了 dim 维度之外,其他所有维度的大小都与 index 相同。

2. 示例

py 复制代码
import torch

# 创建一个输入张量
input_tensor = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

# 创建一个索引张量,其形状与输入张量相同
index_tensor = torch.tensor([[0, 2, 1], [2, 0, 1], [1, 0, 2]])

# 使用 torch.gather 收集元素,沿着列(dim=1)
output_tensor = torch.gather(input_tensor, 1, index_tensor)

print(output_tensor)

说明

在上面的示例中,torch.gather(input_tensor, 1, index_tensor) 的输出将是:

  • 对于第 0 行,列索引(dim为1)为 [0, 2, 1],所以收集的元素是 [1, 3, 2]。
  • 对于第 1 行,列索引为 [2, 0, 1],所以收集的元素是 [6, 4, 5]。
  • 对于第 2 行,列索引为 [1, 0, 2],所以收集的元素是 [8, 7, 9]。

因此,输出张量将是:

shell 复制代码
tensor([[1, 3, 2],
        [6, 4, 5],
        [8, 7, 9]])

注意事项:确保 index 中的所有值都在有效范围内,即从 0 到 input.size(dim) - 1。如果 index 中有任何值超出了这个范围,将会引发错误。

相关推荐
Siren_dream5 小时前
python进阶_Day8
开发语言·python
姬嘉晗-19期-河北工职大5 小时前
HCL设备启动失败
python·终端·anaconda·解释器
淬炼之火5 小时前
基于pycharm和anaconda的yolo简单部署测试
python·深度学习·yolo·pycharm·ultralytics
麦麦大数据6 小时前
F024 CNN+vue+flask电影推荐系统vue+python+mysql+CNN实现
vue.js·python·cnn·flask·推荐算法
Zzz 小生6 小时前
编程基础学习(一)-Python基础语法+数据结构+面向对象全解析
开发语言·python
white-persist6 小时前
JWT 漏洞全解析:从原理到实战
前端·网络·python·安全·web安全·网络安全·系统安全
久未6 小时前
Pytorch autoload机制自动加载树外扩展(Autoload Device Extension)
人工智能·pytorch·python
java1234_小锋7 小时前
TensorFlow2 Python深度学习 - TensorFlow2框架入门 - 使用Keras.Model来定义模型
python·深度学习·tensorflow·tensorflow2
Learn Beyond Limits7 小时前
TensorFlow Implementation of Content-Based Filtering|基于内容过滤的TensorFlow实现
人工智能·python·深度学习·机器学习·ai·tensorflow·吴恩达
java1234_小锋7 小时前
TensorFlow2 Python深度学习 - 函数式API(Functional API)
python·深度学习·tensorflow·tensorflow2