torch.gather的使用

torch.gather 函数的作用是按照指定的维度 dim 和索引 index 从输入张量 input 中收集数值。这个操作通常用于根据索引从一个维度中选择元素,并生成一个新的张量作为输出

1. 介绍

1.1 参数说明

  • input: 需要从中选取元素的原始张量。
  • dim: 沿着此维度选取元素。例如,如果 dim=0,则沿着第一个维度(通常是)选取;如果 dim=1,则沿着第二个维度(通常是)选取。
  • index: 一个长整型张量,包含要选取的索引。index 的形状应该与 input 的形状相同,或者可以广播到 input 的形状。

1.2. 索引张量 index 的作用

  • index 张量中的每个元素指定了在 input 张量中 dim 维度上的位置。例如,如果 dim=1(列) 并且 index[i, j] 的值为 k,则从第 i 行的第 k 列选取元素
  • 根据 index 张量中的索引,在 input 张量中沿着 dim 维度收集元素。
  • 输出张量的形状与 index 张量的形状相同。这意味着除了 dim 维度之外,其他所有维度的大小都与 index 相同。

2. 示例

py 复制代码
import torch

# 创建一个输入张量
input_tensor = torch.tensor([[1, 2, 3], [4, 5, 6], [7, 8, 9]])

# 创建一个索引张量,其形状与输入张量相同
index_tensor = torch.tensor([[0, 2, 1], [2, 0, 1], [1, 0, 2]])

# 使用 torch.gather 收集元素,沿着列(dim=1)
output_tensor = torch.gather(input_tensor, 1, index_tensor)

print(output_tensor)

说明

在上面的示例中,torch.gather(input_tensor, 1, index_tensor) 的输出将是:

  • 对于第 0 行,列索引(dim为1)为 [0, 2, 1],所以收集的元素是 [1, 3, 2]。
  • 对于第 1 行,列索引为 [2, 0, 1],所以收集的元素是 [6, 4, 5]。
  • 对于第 2 行,列索引为 [1, 0, 2],所以收集的元素是 [8, 7, 9]。

因此,输出张量将是:

shell 复制代码
tensor([[1, 3, 2],
        [6, 4, 5],
        [8, 7, 9]])

注意事项:确保 index 中的所有值都在有效范围内,即从 0 到 input.size(dim) - 1。如果 index 中有任何值超出了这个范围,将会引发错误。

相关推荐
Eiceblue7 分钟前
Python读取PDF:文本、图片与文档属性
数据库·python·pdf
红衣小蛇妖19 分钟前
神经网络-Day45
人工智能·深度学习·神经网络
weixin_5275504019 分钟前
初级程序员入门指南
javascript·python·算法
JoannaJuanCV35 分钟前
BEV和OCC学习-5:数据预处理流程
深度学习·目标检测·3d·occ·bev
程序员的世界你不懂39 分钟前
Appium+python自动化(十)- 元素定位
python·appium·自动化
CryptoPP1 小时前
使用WebSocket实时获取印度股票数据源(无调用次数限制)实战
后端·python·websocket·网络协议·区块链
树叶@1 小时前
Python数据分析7
开发语言·python
老胖闲聊2 小时前
Python Rio 【图像处理】库简介
开发语言·图像处理·python
码界奇点3 小时前
Python Flask文件处理与异常处理实战指南
开发语言·python·自然语言处理·flask·python3.11
浠寒AI3 小时前
智能体模式篇(上)- 深入 ReAct:LangGraph构建能自主思考与行动的 AI
人工智能·python